Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14038792367384232754203912 ~2019
14042666797128085333594312 ~2018
14042756111928085512223912 ~2018
14045393467128090786934312 ~2018
14045411165928090822331912 ~2018
14045803549128091607098312 ~2018
14047484000328094968000712 ~2018
14048757569928097515139912 ~2018
14050168116184301008696712 ~2019
14050607431128101214862312 ~2018
14052361763928104723527912 ~2018
14052415013928104830027912 ~2018
14053230475128106460950312 ~2018
14053404061128106808122312 ~2018
14054321255928108642511912 ~2018
1405656925692586...43269714 2025
14057791879128115583758312 ~2018
14057922680328115845360712 ~2018
14058565037928117130075912 ~2018
14058710492328117420984712 ~2018
14059276964328118553928712 ~2018
14059746236328119492472712 ~2018
14060258648328120517296712 ~2018
14060648725128121297450312 ~2018
1406097517493149...39177714 2024
Exponent Prime Factor Dig. Year
14061397741128122795482312 ~2018
14061765067128123530134312 ~2018
14062190122184373140732712 ~2019
14062440715128124881430312 ~2018
14062711846184376271076712 ~2019
14063290334328126580668712 ~2018
14063593379928127186759912 ~2018
14064584395128129168790312 ~2018
14064911240328129822480712 ~2018
14065359949128130719898312 ~2018
14065903948184395423688712 ~2019
14070229316328140458632712 ~2018
14070459537784422757226312 ~2019
14071841875128143683750312 ~2018
14072126989128144253978312 ~2018
14073602621928147205243912 ~2018
14074133831928148267663912 ~2018
1407475473774475...06588714 2024
1407567265273856...06839914 2024
14078266253928156532507912 ~2018
14078904248328157808496712 ~2018
14078942039928157884079912 ~2018
14079062489928158124979912 ~2018
14079491341128158982682312 ~2018
1408024692592703...09772914 2024
Exponent Prime Factor Dig. Year
14080595819384483574915912 ~2019
14080868333384485209999912 ~2019
14081300948328162601896712 ~2018
14082259922328164519844712 ~2018
14083972544328167945088712 ~2018
14085238679928170477359912 ~2018
14087228213928174456427912 ~2018
14090169962328180339924712 ~2018
14090822873928181645747912 ~2018
14091152243928182304487912 ~2018
14091395326184548371956712 ~2019
14092487944184554927664712 ~2019
14092631767128185263534312 ~2018
14093687515128187375030312 ~2018
14095157173128190314346312 ~2018
14095985977384575915863912 ~2019
14097063721128194127442312 ~2018
14098767061128197534122312 ~2018
14099320831128198641662312 ~2018
14100174481384601046887912 ~2019
14101728437928203456875912 ~2018
14101933973928203867947912 ~2018
14102230292328204460584712 ~2018
14102766073128205532146312 ~2018
14103288085384619728511912 ~2019
Exponent Prime Factor Dig. Year
14103913319928207826639912 ~2018
14104407499128208814998312 ~2018
14104753537128209507074312 ~2018
14105103836328210207672712 ~2018
14105132948328210265896712 ~2018
14105628607384633771643912 ~2019
14105732475784634394854312 ~2019
14106294302328212588604712 ~2018
14106352222184638113332712 ~2019
14106451741128212903482312 ~2018
14107559411928215118823912 ~2018
14107713283128215426566312 ~2018
14108167219128216334438312 ~2018
14109166855128218333710312 ~2018
14109566755128219133510312 ~2018
14109588272328219176544712 ~2018
14110666799384664000795912 ~2019
14111115703784666694222312 ~2019
14111468519928222937039912 ~2018
14111752727928223505455912 ~2018
14111811133128223622266312 ~2018
14112549437928225098875912 ~2018
14112672569928225345139912 ~2018
14113532351928227064703912 ~2018
14114026817928228053635912 ~2018
Home
5.247.179 digits
e-mail
25-12-14