Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12789009173925578018347912 ~2018
12789788618325579577236712 ~2018
12790587584325581175168712 ~2018
12791058149925582116299912 ~2018
12791610629925583221259912 ~2018
12792810733776756864402312 ~2019
12793598419125587196838312 ~2018
12794275148325588550296712 ~2018
12795282235125590564470312 ~2018
12795884669925591769339912 ~2018
12796295846325592591692712 ~2018
12796460923125592921846312 ~2018
12796482769376778896615912 ~2019
12797076193125594152386312 ~2018
12798422179125596844358312 ~2018
12799782253125599564506312 ~2018
12800258570325600517140712 ~2018
12800285959125600571918312 ~2018
12800655036176803930216712 ~2019
12801069278325602138556712 ~2018
12802612603776815675622312 ~2019
12802867327125605734654312 ~2018
12803532253125607064506312 ~2018
12803640641925607281283912 ~2018
12804404075925608808151912 ~2018
Exponent Prime Factor Dig. Year
12804441266325608882532712 ~2018
12804999680325609999360712 ~2018
12806599513125613199026312 ~2018
12806639744325613279488712 ~2018
12807320617125614641234312 ~2018
12807839497125615678994312 ~2018
12807906775125615813550312 ~2018
12808341920325616683840712 ~2018
12809116190325618232380712 ~2018
12809696702325619393404712 ~2018
1280986753794534...08416714 2023
12810285205776861711234312 ~2019
12810319013925620638027912 ~2018
12810960500325621921000712 ~2018
12811026670176866160020712 ~2019
12811715906325623431812712 ~2018
12811716202176870297212712 ~2019
12812184914325624369828712 ~2018
12812349295125624698590312 ~2018
12812751404325625502808712 ~2018
12812776490325625552980712 ~2018
1281501016493383...83533714 2024
12815140131776890840790312 ~2019
12815414791125630829582312 ~2018
12816806210325633612420712 ~2018
Exponent Prime Factor Dig. Year
12817379510325634759020712 ~2018
12819038627925638077255912 ~2018
12819249157125638498314312 ~2018
12819418225125638836450312 ~2018
1282093935791089...54215115 2025
12821099971125642199942312 ~2018
12821819081925643638163912 ~2018
12822105403376932632419912 ~2019
12823494565125646989130312 ~2018
12824194261776945165570312 ~2019
12825497609925650995219912 ~2018
12826700792325653401584712 ~2018
12827524778325655049556712 ~2018
12828302879925656605759912 ~2018
12828680023125657360046312 ~2018
12828739139925657478279912 ~2018
12829016750325658033500712 ~2018
12829778053125659556106312 ~2018
12829871240325659742480712 ~2018
1282991258531591...54759117 2025
12830854369125661708738312 ~2018
12831085553925662171107912 ~2018
12831134972325662269944712 ~2018
12831518975376989113851912 ~2019
12831559315125663118630312 ~2018
Exponent Prime Factor Dig. Year
12832359229776994155378312 ~2019
12832575959925665151919912 ~2018
1283358295698598...81123114 2025
12833836025925667672051912 ~2018
12834523003125669046006312 ~2018
12835339727925670679455912 ~2018
12835966853377015801119912 ~2019
12836553953925673107907912 ~2018
12837053318325674106636712 ~2018
12837970505925675941011912 ~2018
12838586065125677172130312 ~2018
12839076755925678153511912 ~2018
12839234125125678468250312 ~2018
12840271105125680542210312 ~2018
12840320591925680641183912 ~2018
12840323540325680647080712 ~2018
12840406085925680812171912 ~2018
12841806475777050838854312 ~2019
12841902253125683804506312 ~2018
12842409371925684818743912 ~2018
1284270772137474...93796714 2025
12843408991125686817982312 ~2018
12844526071125689052142312 ~2018
12845693365125691386730312 ~2018
12846503705925693007411912 ~2018
Home
5.187.277 digits
e-mail
25-11-17