Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10659986315921319972631912 ~2017
10660303601921320607203912 ~2017
10660829737121321659474312 ~2017
10660965799121321931598312 ~2017
10661003251363966019507912 ~2018
10663589173121327178346312 ~2017
10663963577921327927155912 ~2017
10664022109121328044218312 ~2017
10664073077363984438463912 ~2018
10664093929121328187858312 ~2017
10664867374185318938992912 ~2019
1066503815217252...43428114 2025
10665310715985322485727312 ~2019
10665491616163992949696712 ~2018
1066573281717359...43799114 2024
10666282439921332564879912 ~2017
10666462261121332924522312 ~2017
10666487531921332975063912 ~2017
10666672031364000032187912 ~2018
10669090251764014541510312 ~2018
10669200925121338401850312 ~2017
10669340424164016042544712 ~2018
10669848087764019088526312 ~2018
10669880072321339760144712 ~2017
10670302651121340605302312 ~2017
Exponent Prime Factor Dig. Year
10670436536321340873072712 ~2017
10670443442321340886884712 ~2017
10671322826321342645652712 ~2017
10671341753921342683507912 ~2017
10671640583985373124671312 ~2019
10671665212185373321696912 ~2019
10671920269764031521618312 ~2018
10672101139364032606835912 ~2018
10673742028185389936224912 ~2019
10674057323921348114647912 ~2017
10674798488321349596976712 ~2017
10675334983121350669966312 ~2017
1067554657793330...32304914 2024
10676743615121353487230312 ~2017
10677801647364066809883912 ~2018
10678140569364068843415912 ~2018
10678268227121356536454312 ~2017
10678540463921357080927912 ~2017
10678918027121357836054312 ~2017
10679031823121358063646312 ~2017
10679465225921358930451912 ~2017
10679620943364077725659912 ~2018
10679653009121359306018312 ~2017
10679716129121359432258312 ~2017
10680788279921361576559912 ~2017
Exponent Prime Factor Dig. Year
10681576723121363153446312 ~2017
10682580871121365161742312 ~2017
10683877621121367755242312 ~2017
10684745471364108472827912 ~2018
10686056653121372113306312 ~2017
10686170798321372341596712 ~2017
1068654781912586...72222314 2024
10687186976321374373952712 ~2017
10687553773121375107546312 ~2017
10688126759921376253519912 ~2017
10688591131121377182262312 ~2017
10689214658321378429316712 ~2017
10689819548321379639096712 ~2017
10690005163121380010326312 ~2017
10690105106321380210212712 ~2017
10690133252321380266504712 ~2017
10690579397921381158795912 ~2017
10691166535121382333070312 ~2017
10692077950185536623600912 ~2019
10692708691121385417382312 ~2017
10694024426321388048852712 ~2017
1069423576311206...40776915 2025
10695077894321390155788712 ~2017
10696029464321392058928712 ~2017
10696568677121393137354312 ~2017
Exponent Prime Factor Dig. Year
10698293152164189758912712 ~2018
10698653675921397307351912 ~2017
10699157431121398314862312 ~2017
10699817952164198907712712 ~2018
10700065435785600523485712 ~2019
10701061940321402123880712 ~2017
10701739742321403479484712 ~2017
10702139276321404278552712 ~2017
10702308983921404617967912 ~2017
10702824206321405648412712 ~2017
10702956105764217736634312 ~2018
10702989611921405979223912 ~2017
10703025014321406050028712 ~2017
10704042292785632338341712 ~2019
10704778197764228669186312 ~2018
10704885675764229314054312 ~2018
10705064723921410129447912 ~2017
1070522343892397...50313714 2024
10705690171785645521373712 ~2019
10706913653364241481919912 ~2018
10706955623921413911247912 ~2017
10707388484321414776968712 ~2017
1070746717091520...38267914 2024
10707831284321415662568712 ~2017
10708079485121416158970312 ~2017
Home
5.307.017 digits
e-mail
26-01-11