Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18900411389937800822779912 ~2019
18903384505137806769010312 ~2019
18903594493137807188986312 ~2019
18904295126337808590252712 ~2019
18906194792337812389584712 ~2019
18907248205137814496410312 ~2019
18907316981937814633963912 ~2019
18908086226337816172452712 ~2019
18908617283937817234567912 ~2019
18909355507137818711014312 ~2019
18909567146337819134292712 ~2019
18909697813137819395626312 ~2019
18910003195137820006390312 ~2019
18911243138337822486276712 ~2019
18911300429937822600859912 ~2019
18912304657137824609314312 ~2019
18913254557937826509115912 ~2019
18915625757937831251515912 ~2019
18915757453137831514906312 ~2019
18915824821137831649642312 ~2019
18916893005937833786011912 ~2019
18917095763937834191527912 ~2019
18917622199137835244398312 ~2019
18918569851137837139702312 ~2019
1891859962037113...57232914 2025
Exponent Prime Factor Dig. Year
18919691234337839382468712 ~2019
18919812595137839625190312 ~2019
18920606905137841213810312 ~2019
1892242214991286...61932115 2025
18922540393137845080786312 ~2019
18923155466337846310932712 ~2019
18923579543937847159087912 ~2019
18926676545937853353091912 ~2019
18926948831937853897663912 ~2019
18927764378337855528756712 ~2019
18928275542337856551084712 ~2019
18930721301937861442603912 ~2019
18932076611937864153223912 ~2019
18933067961937866135923912 ~2019
1893586048874090...65559314 2023
18937221491937874442983912 ~2019
18937594879137875189758312 ~2019
18937837793937875675587912 ~2019
18938149075137876298150312 ~2019
18939262652337878525304712 ~2019
18939830809137879661618312 ~2019
18939838496337879676992712 ~2019
1894125218995152...95652914 2023
18943247528337886495056712 ~2019
18943300229937886600459912 ~2019
Exponent Prime Factor Dig. Year
18945281612337890563224712 ~2019
18946243427937892486855912 ~2019
18947584154337895168308712 ~2019
18947768767137895537534312 ~2019
18948201620337896403240712 ~2019
18948553751937897107503912 ~2019
18948578333937897156667912 ~2019
18951839179137903678358312 ~2019
18953185061937906370123912 ~2019
18957496753137914993506312 ~2019
18958038287937916076575912 ~2019
18958867061937917734123912 ~2019
18960233276337920466552712 ~2019
1896049387497280...47961714 2025
1896066574312768...98492714 2024
1896123547978911...75459114 2025
18962534953137925069906312 ~2019
18962608220337925216440712 ~2019
18963776689137927553378312 ~2019
18967421297937934842595912 ~2019
18970006549137940013098312 ~2019
18970262953137940525906312 ~2019
18970533614337941067228712 ~2019
18971312516337942625032712 ~2019
18972066053937944132107912 ~2019
Exponent Prime Factor Dig. Year
18972468767937944937535912 ~2019
1897438054698158...35167114 2025
18975504085137951008170312 ~2019
18975898183137951796366312 ~2019
18976810844337953621688712 ~2019
18978099737937956199475912 ~2019
18980664217137961328434312 ~2019
18984852557937969705115912 ~2019
18986393393937972786787912 ~2019
18986837831937973675663912 ~2019
18987164666337974329332712 ~2019
18990647618337981295236712 ~2019
18991724233137983448466312 ~2019
18992218771137984437542312 ~2019
1899434380394406...62504914 2023
18995269145937990538291912 ~2019
18995937536337991875072712 ~2019
18996651113937993302227912 ~2019
18997290812337994581624712 ~2019
18999714926337999429852712 ~2019
19000556449138001112898312 ~2019
19000635860338001271720712 ~2019
19001387875138002775750312 ~2019
19001967833938003935667912 ~2019
19001999846338003999692712 ~2019
Home
5.187.277 digits
e-mail
25-11-17