Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11504282521123008565042312 ~2017
11504374643923008749287912 ~2017
11505174233923010348467912 ~2017
11505517639123011035278312 ~2017
11505592082323011184164712 ~2017
11505839017123011678034312 ~2017
11506537517923013075035912 ~2017
11506558394323013116788712 ~2017
11508642719923017285439912 ~2017
11510271302323020542604712 ~2017
11510517014323021034028712 ~2017
11510729599369064377595912 ~2019
11510836085923021672171912 ~2017
11511039716323022079432712 ~2017
11511507834169069047004712 ~2019
11512399951369074399707912 ~2019
11513113807123026227614312 ~2017
11513890963123027781926312 ~2017
11514046598323028093196712 ~2017
11514867920323029735840712 ~2017
11514969235123029938470312 ~2017
11515915663123031831326312 ~2017
11517466351123034932702312 ~2017
11517749981923035499963912 ~2017
11517902105923035804211912 ~2017
Exponent Prime Factor Dig. Year
11518207663123036415326312 ~2017
11518232534323036465068712 ~2017
11520339632323040679264712 ~2017
11520522661123041045322312 ~2017
11521615735123043231470312 ~2017
11523440612323046881224712 ~2017
11525509903123051019806312 ~2017
11526484931923052969863912 ~2017
11526793715923053587431912 ~2017
11527000634323054001268712 ~2017
11527210783123054421566312 ~2017
11527325069923054650139912 ~2017
11528360557369170163343912 ~2019
11528406779923056813559912 ~2017
11530937039923061874079912 ~2017
11531719350169190316100712 ~2019
11531778716323063557432712 ~2017
11532731717923065463435912 ~2017
11532994847923065989695912 ~2017
11533330327123066660654312 ~2017
11533687729123067375458312 ~2017
11534562400169207374400712 ~2019
11535315044323070630088712 ~2017
11535639356323071278712712 ~2017
11535658099369213948595912 ~2019
Exponent Prime Factor Dig. Year
11536504059769219024358312 ~2019
11536611032323073222064712 ~2017
11537897561923075795123912 ~2017
1153926794592797...00861715 2025
11539347432169236084592712 ~2019
11539368617923078737235912 ~2017
11539917686323079835372712 ~2017
11540755145923081510291912 ~2017
1154126246894778...62124714 2023
11541278345923082556691912 ~2017
11541317831923082635663912 ~2017
11541769301923083538603912 ~2017
11543439391123086878782312 ~2017
11543486684323086973368712 ~2017
11543641981123087283962312 ~2017
11544004225123088008450312 ~2017
11544102941923088205883912 ~2017
11545213010323090426020712 ~2017
11545505945923091011891912 ~2017
11545967072323091934144712 ~2017
11546321193769277927162312 ~2019
11546414594323092829188712 ~2017
11546461523923092923047912 ~2017
11546519419123093038838312 ~2017
11547321242323094642484712 ~2017
Exponent Prime Factor Dig. Year
11547549577123095099154312 ~2017
1154786453511963...70967114 2024
11548492837123096985674312 ~2017
11548939063769293634382312 ~2019
11549553773923099107547912 ~2017
11549677568323099355136712 ~2017
11549848000169299088000712 ~2019
11550147697123100295394312 ~2017
11550244358323100488716712 ~2017
11550718070323101436140712 ~2017
11551348310323102696620712 ~2017
11552660251123105320502312 ~2017
11552676941923105353883912 ~2017
11553119171923106238343912 ~2017
11553753816169322522896712 ~2019
11553996323923107992647912 ~2017
11554270242169325621452712 ~2019
11554492715923108985431912 ~2017
11554898706169329392236712 ~2019
11555021501923110043003912 ~2017
11555048981923110097963912 ~2017
11555389643923110779287912 ~2017
11555715889123111431778312 ~2017
1155694205291017...06552115 2025
1155753047512427...99771114 2024
Home
5.307.017 digits
e-mail
26-01-11