Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13480437344326960874688712 ~2018
13480464629926960929259912 ~2018
13480938983926961877967912 ~2018
13480978463380885870779912 ~2019
13481405033380888430199912 ~2019
13481476687126962953374312 ~2018
13482557447926965114895912 ~2018
13482841579126965683158312 ~2018
13483050332326966100664712 ~2018
13483272692326966545384712 ~2018
13484025337126968050674312 ~2018
13485091148326970182296712 ~2018
13485482051926970964103912 ~2018
13487148470326974296940712 ~2018
13488182089126976364178312 ~2018
1348855500433156...71006314 2024
13489329823126978659646312 ~2018
13489403423926978806847912 ~2018
13490599574326981199148712 ~2018
13491022153126982044306312 ~2018
13491260695780947564174312 ~2019
13493273541780959641250312 ~2019
13493661341926987322683912 ~2018
13494545413126989090826312 ~2018
13494848257780969089546312 ~2019
Exponent Prime Factor Dig. Year
13496252945926992505891912 ~2018
1349690140799312...71451114 2025
13497364352326994728704712 ~2018
13497688802326995377604712 ~2018
13498217506180989305036712 ~2019
13499577127126999154254312 ~2018
1350041332794779...18076714 2023
13500521382181003128292712 ~2019
13502075366327004150732712 ~2018
13502376523127004753046312 ~2018
13502853067127005706134312 ~2018
13503615655127007231310312 ~2018
13503893533127007787066312 ~2018
13503992006327007984012712 ~2018
13505051329127010102658312 ~2018
13506167060327012334120712 ~2018
13506190523927012381047912 ~2018
13506326984327012653968712 ~2018
13506887959381041327755912 ~2019
13507774172327015548344712 ~2018
13508545908181051275448712 ~2019
13509330331381055981987912 ~2019
13509566267381057397603912 ~2019
13510592420327021184840712 ~2018
13513258442327026516884712 ~2018
Exponent Prime Factor Dig. Year
13513703195927027406391912 ~2018
13513770364181082622184712 ~2019
13513972074181083832444712 ~2019
13514717299127029434598312 ~2018
13515320365127030640730312 ~2018
13515536347127031072694312 ~2018
13515790007927031580015912 ~2018
13515910700327031821400712 ~2018
13516201223927032402447912 ~2018
13516827656327033655312712 ~2018
13518110869781108665218312 ~2019
13519257065927038514131912 ~2018
13519756139927039512279912 ~2018
13519966811927039933623912 ~2018
13519994881127039989762312 ~2018
13520242472327040484944712 ~2018
1352049929395543...10499114 2023
13520560173781123361042312 ~2019
13522375508327044751016712 ~2018
13523203289927046406579912 ~2018
13523269033127046538066312 ~2018
13523318711381139912267912 ~2019
13524044809781144268858312 ~2019
13524416963927048833927912 ~2018
13524605995127049211990312 ~2018
Exponent Prime Factor Dig. Year
13524654313781147925882312 ~2019
13524922447127049844894312 ~2018
13525195364327050390728712 ~2018
13527253009127054506018312 ~2018
13527445111127054890222312 ~2018
13527576476327055152952712 ~2018
13527713465927055426931912 ~2018
13528557666181171345996712 ~2019
1352875262511875...38388715 2024
13529097704327058195408712 ~2018
13530511688327061023376712 ~2018
13530546431927061092863912 ~2018
13531255961927062511923912 ~2018
13531300945127062601890312 ~2018
13532779889927065559779912 ~2018
13533119501927066239003912 ~2018
13533482039927066964079912 ~2018
1353388072137876...79796714 2025
13533919316327067838632712 ~2018
13534669496327069338992712 ~2018
13534963499927069926999912 ~2018
13535254496327070508992712 ~2018
13535974055927071948111912 ~2018
13536085868327072171736712 ~2018
13536289153781217734922312 ~2019
Home
5.247.179 digits
e-mail
25-12-14