Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11243509855122487019710312 ~2017
11245008128322490016256712 ~2017
11245048613922490097227912 ~2017
11245514351922491028703912 ~2017
1124580603733184...97633715 2025
11245840475922491680951912 ~2017
11246211917922492423835912 ~2017
11246302727367477816363912 ~2019
11246980165122493960330312 ~2017
11247262889922494525779912 ~2017
11248773787122497547574312 ~2017
11250963619122501927238312 ~2017
11251263952167507583712712 ~2019
11252255497122504510994312 ~2017
11252702126322505404252712 ~2017
11252764789122505529578312 ~2017
11253235667922506471335912 ~2017
11253706196322507412392712 ~2017
11253768331122507536662312 ~2017
11254164098322508328196712 ~2017
11254398625122508797250312 ~2017
11254912322322509824644712 ~2017
11255236901922510473803912 ~2017
11256716821122513433642312 ~2017
11256776327922513552655912 ~2017
Exponent Prime Factor Dig. Year
11257945469922515890939912 ~2017
11258158416167548950496712 ~2019
11258227380167549364280712 ~2019
11259079285122518158570312 ~2017
11259139517922518279035912 ~2017
11259346474167556078844712 ~2019
11260477403922520954807912 ~2017
11260755748167564534488712 ~2019
11260832732322521665464712 ~2017
11261461343922522922687912 ~2017
11261797207367570783243912 ~2019
11261801804322523603608712 ~2017
11261835969767571015818312 ~2019
11262875717922525751435912 ~2017
11263434956322526869912712 ~2017
11264138430167584830580712 ~2019
11264547731922529095463912 ~2017
11264754756167588528536712 ~2019
11265942146322531884292712 ~2017
11266066411122532132822312 ~2017
11266249004322532498008712 ~2017
11266867835922533735671912 ~2017
11267081315922534162631912 ~2017
11267526716322535053432712 ~2017
11267945342322535890684712 ~2017
Exponent Prime Factor Dig. Year
11267953847922535907695912 ~2017
11268219758322536439516712 ~2017
1126829613715611...76275914 2023
11268467183922536934367912 ~2017
11268748031922537496063912 ~2017
11269781405922539562811912 ~2017
11269826486322539652972712 ~2017
11270998622322541997244712 ~2017
11272057478322544114956712 ~2017
11272245551922544491103912 ~2017
11272251839922544503679912 ~2017
11272622779122545245558312 ~2017
11273439794322546879588712 ~2017
11274273069767645638418312 ~2019
11274320174322548640348712 ~2017
11274917783922549835567912 ~2017
11275707913122551415826312 ~2017
11276684131122553368262312 ~2017
11276710193922553420387912 ~2017
11277515005122555030010312 ~2017
11277815437122555630874312 ~2017
1127806148332323...65559914 2024
11278715977767672295866312 ~2019
11280108103122560216206312 ~2017
11280511387367683068323912 ~2019
Exponent Prime Factor Dig. Year
11280555847122561111694312 ~2017
11280646439922561292879912 ~2017
11281008037122562016074312 ~2017
11281442285922562884571912 ~2017
11281511639922563023279912 ~2017
11281974503922563949007912 ~2017
11282115745122564231490312 ~2017
11282967140322565934280712 ~2017
11283392681922566785363912 ~2017
11283613741122567227482312 ~2017
11284823171922569646343912 ~2017
11286497767122572995534312 ~2017
11287094156322574188312712 ~2017
11287268609922574537219912 ~2017
11287422374322574844748712 ~2017
11287637011122575274022312 ~2017
11287933520322575867040712 ~2017
11288009666322576019332712 ~2017
11288109575367728657451912 ~2019
11288646668322577293336712 ~2017
11288722601922577445203912 ~2017
11289683267922579366535912 ~2017
11289686272167738117632712 ~2019
11290492543122580985086312 ~2017
11291187949122582375898312 ~2017
Home
5.307.017 digits
e-mail
26-01-11