Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9852781958319705563916712 ~2017
9853409186319706818372712 ~2017
9853580222319707160444712 ~2017
9854120918319708241836712 ~2017
9854193355119708386710312 ~2017
9854270408319708540816712 ~2017
9854695940319709391880712 ~2017
9854956667919709913335912 ~2017
9855033781359130202687912 ~2018
9855567847119711135694312 ~2017
9856304659119712609318312 ~2017
9856638013119713276026312 ~2017
9857037281919714074563912 ~2017
9857742884319715485768712 ~2017
9857749127919715498255912 ~2017
9858286246159149717476712 ~2018
9858403588159150421528712 ~2018
9859926495759159558974312 ~2018
985995671933634...67339915 2023
9860261215119720522430312 ~2017
9861213625119722427250312 ~2017
9861600595119723201190312 ~2017
986162444037987...96643114 2025
9861699893919723399787912 ~2017
9861999149919723998299912 ~2017
Exponent Prime Factor Dig. Year
9862275073178898200584912 ~2018
9862461906159174771436712 ~2018
9862741451978901931615312 ~2018
9863020406319726040812712 ~2017
9863213905119726427810312 ~2017
9863485709919726971419912 ~2017
9863514611919727029223912 ~2017
9863604920319727209840712 ~2017
9863841853119727683706312 ~2017
9864235225178913881800912 ~2018
9865280882319730561764712 ~2017
9865455071919730910143912 ~2017
9865609067919731218135912 ~2017
9866541535119733083070312 ~2017
9867275937759203655626312 ~2018
9868079294319736158588712 ~2017
9868148663919736297327912 ~2017
9868543375119737086750312 ~2017
9869894042978959152343312 ~2018
9869957834319739915668712 ~2017
9870797545119741595090312 ~2017
987088217274580...28132914 2023
9871308853119742617706312 ~2017
987156722412428...37128714 2024
9871713970159230283820712 ~2018
Exponent Prime Factor Dig. Year
9871923220159231539320712 ~2018
9872085284319744170568712 ~2017
9872111365119744222730312 ~2017
987319972913811...95432714 2024
9873222551919746445103912 ~2017
9873585458319747170916712 ~2017
9873612638319747225276712 ~2017
9873746981359242481887912 ~2018
9874146727119748293454312 ~2017
9875101988319750203976712 ~2017
9875598113919751196227912 ~2017
9875618618319751237236712 ~2017
9876182489979009459919312 ~2018
9876716531919753433063912 ~2017
9876716699919753433399912 ~2017
9876957371919753914743912 ~2017
9877074523119754149046312 ~2017
9877220096319754440192712 ~2017
9877282511359263695067912 ~2018
9877681385359266088311912 ~2018
9877887583119755775166312 ~2017
9878696096319757392192712 ~2017
9879535934319759071868712 ~2017
9879698045919759396091912 ~2017
9880512745119761025490312 ~2017
Exponent Prime Factor Dig. Year
9881711471919763422943912 ~2017
9881719411119763438822312 ~2017
9882259229919764518459912 ~2017
9882277178319764554356712 ~2017
9882303145119764606290312 ~2017
9882346361919764692723912 ~2017
9882408043759294448262312 ~2018
9882846663759297079982312 ~2018
9882875614159297253684712 ~2018
9883456684159300740104712 ~2018
9883654951759301929710312 ~2018
9884388605919768777211912 ~2017
9884604719919769209439912 ~2017
988523985437117...95096114 2025
9885896705919771793411912 ~2017
9887588837919775177675912 ~2017
9888421171759330527030312 ~2018
9888630493119777260986312 ~2017
9890000477919780000955912 ~2017
9890014909119780029818312 ~2017
9891432355359348594131912 ~2018
9891935383779135483069712 ~2018
9892602677919785205355912 ~2017
9892728040779141824325712 ~2018
9893160086319786320172712 ~2017
Home
5.307.017 digits
e-mail
26-01-11