Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1529302409175597...17562314 2023
15293377346330586754692712 ~2018
15293528671130587057342312 ~2018
15295264795130590529590312 ~2018
15296128615130592257230312 ~2018
15296290136330592580272712 ~2018
15297864104330595728208712 ~2018
15298012034330596024068712 ~2018
15298116121130596232242312 ~2018
15299455370330598910740712 ~2018
15300401401130600802802312 ~2018
15300884627930601769255912 ~2018
1530161902871621...17042314 2025
15303825869930607651739912 ~2018
15304382942330608765884712 ~2018
15304711267130609422534312 ~2018
15304868483930609736967912 ~2018
15306768281930613536563912 ~2018
15306841759130613683518312 ~2018
15307126591130614253182312 ~2018
15307749920330615499840712 ~2018
15308190242330616380484712 ~2018
15309130196330618260392712 ~2018
15310058312330620116624712 ~2018
15311053969130622107938312 ~2018
Exponent Prime Factor Dig. Year
1531205479971822...11643115 2024
15312786434330625572868712 ~2018
15312792313130625584626312 ~2018
15312989089130625978178312 ~2018
15314364518330628729036712 ~2018
15314969456330629938912712 ~2018
15315171949130630343898312 ~2018
15315230935130630461870312 ~2018
15315678943130631357886312 ~2018
15316230254330632460508712 ~2018
15316605257930633210515912 ~2018
15320016851930640033703912 ~2018
15320547440330641094880712 ~2018
15322802882330645605764712 ~2018
15322894532330645789064712 ~2018
15323865938330647731876712 ~2018
15324804769130649609538312 ~2018
15326554937930653109875912 ~2018
15326867993930653735987912 ~2018
15327408302330654816604712 ~2018
15330639079130661278158312 ~2018
15331371197930662742395912 ~2018
15331397795930662795591912 ~2018
15332490701930664981403912 ~2018
15332972909930665945819912 ~2018
Exponent Prime Factor Dig. Year
15333987455930667974911912 ~2018
15334130828330668261656712 ~2018
15336203779130672407558312 ~2018
15338420336330676840672712 ~2018
15338823188330677646376712 ~2018
15339546722330679093444712 ~2018
15340117609130680235218312 ~2018
1534042494611285...04831915 2023
15340929941930681859883912 ~2018
15341499173930682998347912 ~2018
15341698787930683397575912 ~2018
15341964068330683928136712 ~2018
15342064196330684128392712 ~2018
15342208670330684417340712 ~2018
15343284019130686568038312 ~2018
15345037813130690075626312 ~2018
1534538706791795...69443115 2025
1534571307911611...33055115 2025
15345807721130691615442312 ~2018
15347611691930695223383912 ~2018
15348021062330696042124712 ~2018
1534916582631031...35273715 2023
15349294741130698589482312 ~2018
15349379447930698758895912 ~2018
15349740353930699480707912 ~2018
Exponent Prime Factor Dig. Year
15349927652330699855304712 ~2018
15350926753130701853506312 ~2018
15352406965130704813930312 ~2018
15352603903130705207806312 ~2018
15352630568330705261136712 ~2018
15352691120330705382240712 ~2018
15354338389130708676778312 ~2018
15354632671130709265342312 ~2018
15355179908330710359816712 ~2018
15355581241130711162482312 ~2018
15356232608330712465216712 ~2018
15356732083130713464166312 ~2018
15359933341130719866682312 ~2018
15363589208330727178416712 ~2018
15363876641930727753283912 ~2018
15366273089930732546179912 ~2018
15367949084330735898168712 ~2018
15367964036330735928072712 ~2018
15370505681930741011363912 ~2018
15370598864330741197728712 ~2018
15371652836330743305672712 ~2018
15372076549130744153098312 ~2018
15373547629130747095258312 ~2018
15374412740330748825480712 ~2018
15374796293930749592587912 ~2018
Home
5.187.277 digits
e-mail
25-11-17