Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15038953531130077907062312 ~2018
15039341477930078682955912 ~2018
15039624181130079248362312 ~2018
15042423209930084846419912 ~2018
15043624085930087248171912 ~2018
15044252813930088505627912 ~2018
15044993351930089986703912 ~2018
15045534779930091069559912 ~2018
15045955639130091911278312 ~2018
15047664373130095328746312 ~2018
1504823886531309...12811115 2025
15049841119130099682238312 ~2018
15051097742330102195484712 ~2018
15052920539930105841079912 ~2018
15053694709130107389418312 ~2018
15053721764330107443528712 ~2018
15056511065930113022131912 ~2018
1505791472872529...74421714 2024
15057936509930115873019912 ~2018
15058101751130116203502312 ~2018
15058681682330117363364712 ~2018
15061768772330123537544712 ~2018
1506181520393283...14450314 2024
15064094858330128189716712 ~2018
15066250739930132501479912 ~2018
Exponent Prime Factor Dig. Year
1506736554372531...11341714 2024
15068070509930136141019912 ~2018
15068118788330136237576712 ~2018
15068386999130136773998312 ~2018
15069587312330139174624712 ~2018
15069778532330139557064712 ~2018
15070235819930140471639912 ~2018
15071779364330143558728712 ~2018
1507206258717234...41808114 2025
15072768965930145537931912 ~2018
15073819507130147639014312 ~2018
1507443685011266...54084115 2025
15074701993130149403986312 ~2018
15076438475930152876951912 ~2018
15076853435930153706871912 ~2018
15080533543130161067086312 ~2018
15080973809930161947619912 ~2018
15081232097930162464195912 ~2018
1508149232218777...31462314 2025
15084712789130169425578312 ~2018
15085101614330170203228712 ~2018
1508522537091279...14523315 2025
15085452296330170904592712 ~2018
15085468394330170936788712 ~2018
15085482301130170964602312 ~2018
Exponent Prime Factor Dig. Year
15086188691930172377383912 ~2018
15086902757930173805515912 ~2018
15090012067130180024134312 ~2018
15090388103930180776207912 ~2018
15092512880330185025760712 ~2018
15093059747930186119495912 ~2018
15093983161130187966322312 ~2018
15096205898330192411796712 ~2018
1509661705577608...96072914 2024
15097106312330194212624712 ~2018
1510002439572416...03312114 2024
15100146907130200293814312 ~2018
15100542233930201084467912 ~2018
15100550075930201100151912 ~2018
15100880453930201760907912 ~2018
15101168443130202336886312 ~2018
15102216098330204432196712 ~2018
15102495577130204991154312 ~2018
15103124081930206248163912 ~2018
15103638896330207277792712 ~2018
15103836761930207673523912 ~2018
15103892414330207784828712 ~2018
15106011451130212022902312 ~2018
15106095361130212190722312 ~2018
15106271485130212542970312 ~2018
Exponent Prime Factor Dig. Year
15107421907130214843814312 ~2018
15107479681130214959362312 ~2018
15109844888330219689776712 ~2018
15110672647130221345294312 ~2018
15110868521930221737043912 ~2018
15110887004330221774008712 ~2018
15111146054330222292108712 ~2018
15112484731130224969462312 ~2018
15113163883130226327766312 ~2018
15113200187930226400375912 ~2018
15114179789930228359579912 ~2018
1511843337496984...19203914 2024
15118781285930237562571912 ~2018
15118985465930237970931912 ~2018
1511947264132267...96195114 2024
15119626973930239253947912 ~2018
15122604629930245209259912 ~2018
15123525320330247050640712 ~2018
15124930423130249860846312 ~2018
15125188763930250377527912 ~2018
15127440397130254880794312 ~2018
15129648677930259297355912 ~2018
15130455761930260911523912 ~2018
15130697606330261395212712 ~2018
15134217923930268435847912 ~2018
Home
5.187.277 digits
e-mail
25-11-17