Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10516846920163101081520712 ~2018
10517631020321035262040712 ~2017
10518756809921037513619912 ~2017
10519488794321038977588712 ~2017
10519832096321039664192712 ~2017
10519905415121039810830312 ~2017
10520560741121041121482312 ~2017
10520713797763124282786312 ~2018
1052119565339307...49091915 2024
10521538517921043077035912 ~2017
10521904957121043809914312 ~2017
10521932602163131595612712 ~2018
10522641079121045282158312 ~2017
10522998971921045997943912 ~2017
10523343709121046687418312 ~2017
10523657467121047314934312 ~2017
10524218831921048437663912 ~2017
10524423751363146542507912 ~2018
10524736562321049473124712 ~2017
10524891338321049782676712 ~2017
10524936572321049873144712 ~2017
10525147231121050294462312 ~2017
10525440979784203527837712 ~2019
10525695752321051391504712 ~2017
10525764319121051528638312 ~2017
Exponent Prime Factor Dig. Year
10525775203121051550406312 ~2017
10526785901921053571803912 ~2017
10526858162321053716324712 ~2017
10527274015121054548030312 ~2017
10528006775921056013551912 ~2017
1052861487071229...68977715 2023
10528907207921057814415912 ~2017
10529484361121058968722312 ~2017
10530006470321060012940712 ~2017
10530740090321061480180712 ~2017
10530934955921061869911912 ~2017
10531480250321062960500712 ~2017
10532293357121064586714312 ~2017
10532348276321064696552712 ~2017
10532455829921064911659912 ~2017
10532835038321065670076712 ~2017
10533059215121066118430312 ~2017
10533261395921066522791912 ~2017
10533295459121066590918312 ~2017
10533447776321066895552712 ~2017
10534234586321068469172712 ~2017
10534445537984275564303312 ~2019
10534476409763206858458312 ~2018
10534855961921069711923912 ~2017
10535151400163210908400712 ~2018
Exponent Prime Factor Dig. Year
10535831897921071663795912 ~2017
10536618557921073237115912 ~2017
10536674200163220045200712 ~2018
10536965966984295727735312 ~2019
10537884830321075769660712 ~2017
10538167015121076334030312 ~2017
10538343467921076686935912 ~2017
10539149143363234894859912 ~2018
10539407660321078815320712 ~2017
10540550336321081100672712 ~2017
10540836644321081673288712 ~2017
10541897123921083794247912 ~2017
10542538667363255232003912 ~2018
10543436609921086873219912 ~2017
10544186138321088372276712 ~2017
10544284448321088568896712 ~2017
10544803849121089607698312 ~2017
10544982329921089964659912 ~2017
10545219074321090438148712 ~2017
10545680708321091361416712 ~2017
10545754003121091508006312 ~2017
10547026489121094052978312 ~2017
10547589392321095178784712 ~2017
10547599589363285597535912 ~2018
10547789587121095579174312 ~2017
Exponent Prime Factor Dig. Year
10548213649121096427298312 ~2017
10548895760321097791520712 ~2017
10549016907763294101446312 ~2018
10549156556321098313112712 ~2017
10550123911121100247822312 ~2017
10551017817763306106906312 ~2018
10551462383921102924767912 ~2017
10551577136321103154272712 ~2017
10551796618163310779708712 ~2018
10552659176321105318352712 ~2017
10553282353121106564706312 ~2017
10553790967121107581934312 ~2017
10553864867921107729735912 ~2017
10554661849121109323698312 ~2017
10557733898321115467796712 ~2017
10558649600321117299200712 ~2017
10558706997763352241986312 ~2018
10559331881363355991287912 ~2018
10559488145921118976291912 ~2017
10559514374321119028748712 ~2017
10560764647121121529294312 ~2017
10560882821921121765643912 ~2017
10561063777121122127554312 ~2017
10561164197921122328395912 ~2017
10561821985121123643970312 ~2017
Home
5.187.277 digits
e-mail
25-11-17