Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9896619287919793238575912 ~2017
9896649277119793298554312 ~2017
9896990720319793981440712 ~2017
9897156302319794312604712 ~2017
9897632927919795265855912 ~2017
9897806453919795612907912 ~2017
9898216133919796432267912 ~2017
9899127248319798254496712 ~2017
9899176183119798352366312 ~2017
9899268889119798537778312 ~2017
9899952743919799905487912 ~2017
9899987173119799974346312 ~2017
9900095564319800191128712 ~2017
9900799373919801598747912 ~2017
9900852583119801705166312 ~2017
9901834909119803669818312 ~2017
9901837633359411025799912 ~2018
9902193413979217547311312 ~2018
9903149483919806298967912 ~2017
9903944654319807889308712 ~2017
9906273284979250186279312 ~2018
9907472215119814944430312 ~2017
990845588175925...17256714 2024
9908610944319817221888712 ~2017
9909249085119818498170312 ~2017
Exponent Prime Factor Dig. Year
9910256312319820512624712 ~2017
9910416986319820833972712 ~2017
9910843850319821687700712 ~2017
9911340419359468042515912 ~2018
9912187969119824375938312 ~2017
9912447512319824895024712 ~2017
9912768092319825536184712 ~2017
9913012889919826025779912 ~2017
9913345163919826690327912 ~2017
9913602551919827205103912 ~2017
9914254537119828509074312 ~2017
9914730701919829461403912 ~2017
9914839775919829679551912 ~2017
9914985956979319887655312 ~2018
9915489595119830979190312 ~2017
9915944633919831889267912 ~2017
9916249883359497499299912 ~2018
991663019174997...16616914 2023
9917395391919834790783912 ~2017
9917877977919835755955912 ~2017
9918558425919837116851912 ~2017
9918779481759512676890312 ~2018
9919627963119839255926312 ~2017
9919676794779357414357712 ~2018
9920142236319840284472712 ~2017
Exponent Prime Factor Dig. Year
9920383436319840766872712 ~2017
9920618443119841236886312 ~2017
9921313945119842627890312 ~2017
9921543241779372345933712 ~2018
9922873565919845747131912 ~2017
9923293405119846586810312 ~2017
9923740159119847480318312 ~2017
9924066688159544400128712 ~2018
9924215545119848431090312 ~2017
9924460895919848921791912 ~2017
9924918757119849837514312 ~2017
9924999002319849998004712 ~2017
9925928042319851856084712 ~2017
9925935338319851870676712 ~2017
9925980263359555881579912 ~2018
9926033036319852066072712 ~2017
9926269502319852539004712 ~2017
9926833141119853666282312 ~2017
9927009617919854019235912 ~2017
9927603403119855206806312 ~2017
9927770327919855540655912 ~2017
992804643731648...08591914 2024
9928375955919856751911912 ~2017
9928756883919857513767912 ~2017
9929023783119858047566312 ~2017
Exponent Prime Factor Dig. Year
9930397690159582386140712 ~2018
9931253579919862507159912 ~2017
9931756318159590537908712 ~2018
9932446664979459573319312 ~2018
9932483107119864966214312 ~2017
9932659598319865319196712 ~2017
9933161317759598967906312 ~2018
9933183785919866367571912 ~2017
9934284505119868569010312 ~2017
9934476050319868952100712 ~2017
9935235469119870470938312 ~2017
9936814676319873629352712 ~2017
9937394227359624365363912 ~2018
9937837253919875674507912 ~2017
9938464355979507714847312 ~2018
9938803825119877607650312 ~2017
9938856871119877713742312 ~2017
9939012943119878025886312 ~2017
9939163759119878327518312 ~2017
9939493591119878987182312 ~2017
9939628129119879256258312 ~2017
9940042265919880084531912 ~2017
9940579816179524638528912 ~2018
9940709729919881419459912 ~2017
9941607434319883214868712 ~2017
Home
5.247.179 digits
e-mail
25-12-14