Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
445628651038912573020711 ~2014
445667513038913350260711 ~2014
445672221238913444424711 ~2014
445677005638913540112711 ~2014
4456770214735654161717712 ~2016
445707838918914156778311 ~2014
445730766238914615324711 ~2014
4457315728344573157283112 ~2016
445836929998916738599911 ~2014
4458485998135667887984912 ~2016
4458558189144585581891112 ~2016
445857660598917153211911 ~2014
445880681834779...09217714 2023
445913087398918261747911 ~2014
445923269038918465380711 ~2014
445926459598918529191911 ~2014
4459755469326758532815912 ~2015
445996783918919935678311 ~2014
446016659398920333187911 ~2014
446039737318920794746311 ~2014
446042820598920856411911 ~2014
4460661865726763971194312 ~2015
4460691268126764147608712 ~2015
446072263438921445268711 ~2014
446075809918921516198311 ~2014
Exponent Prime Factor Dig. Year
4460784517326764707103912 ~2015
446080591318921611826311 ~2014
446124911518922498230311 ~2014
446189168518923783370311 ~2014
4462558896126775353376712 ~2015
446305972798926119455911 ~2014
4463078950126778473700712 ~2015
446341800238926836004711 ~2014
4463471986735707775893712 ~2016
446350907518927018150311 ~2014
4463652944935709223559312 ~2016
446370607318927412146311 ~2014
446372529238927450584711 ~2014
446373295438927465908711 ~2014
4463779821171420477137712 ~2016
446385559318927711186311 ~2014
4464314857326785889143912 ~2015
446434951198928699023911 ~2014
446438938318928778766311 ~2014
446445963838928919276711 ~2014
446461380598929227611911 ~2014
446470683598929413671911 ~2014
4465054937326790329623912 ~2015
446539433038930788660711 ~2014
4465492792735723942341712 ~2016
Exponent Prime Factor Dig. Year
446552286718931045734311 ~2014
446561529238931230584711 ~2014
4465953309726795719858312 ~2015
446621420398932428407911 ~2014
446630515918932610318311 ~2014
446643546598932870931911 ~2014
4466446915326798681491912 ~2015
446665169038933303380711 ~2014
446691439798933828795911 ~2014
446707611118934152222311 ~2014
446709699238934193984711 ~2014
446721669718934433394311 ~2014
446746538518934930770311 ~2014
4467502853980415051370312 ~2017
446756809198935136183911 ~2014
4467865907326807195443912 ~2015
446799033718935980674311 ~2014
446819831638936396632711 ~2014
446835229318936704586311 ~2014
446867570998937351419911 ~2014
446871323518937426470311 ~2014
4468782960126812697760712 ~2015
4468951450126813708700712 ~2015
4469211512935753692103312 ~2016
446925201238938504024711 ~2014
Exponent Prime Factor Dig. Year
446950866718939017334311 ~2014
446958699838939173996711 ~2014
446964814438939296288711 ~2014
446965506838939310136711 ~2014
446999940718939998814311 ~2014
447014059798940281195911 ~2014
447091145991645...17243314 2024
4471106127171537698033712 ~2016
447120065398942401307911 ~2014
4471570225762601983159912 ~2016
4472055349135776442792912 ~2016
447241932771323...20999314 2023
447243331918944866638311 ~2014
447250993798945019875911 ~2014
447283980238945679604711 ~2014
447291712198945834243911 ~2014
4472970731326837824387912 ~2015
447302589718946051794311 ~2014
447322453318946449066311 ~2014
447322659238946453184711 ~2014
447343853212147...95408114 2023
447362007838947240156711 ~2014
447398003518947960070311 ~2014
447409039798948180795911 ~2014
4474092190371585475044912 ~2016
Home
5.247.179 digits
e-mail
25-12-14