Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3541216073321247296439912 ~2015
354130769997082615399911 ~2013
354185548197083710963911 ~2013
354190231197083804623911 ~2013
3541922736735419227367112 ~2015
3541975072728335800581712 ~2015
354211257837084225156711 ~2013
3542194832928337558663312 ~2015
3542220748977928856475912 ~2016
354234569517084691390311 ~2013
354244970517084899410311 ~2013
354255098637085101972711 ~2013
354307180917086143618311 ~2013
3543224009928345792079312 ~2015
354345270597086905411911 ~2013
354346223397086924467911 ~2013
354370501917087410038311 ~2013
3543729166128349833328912 ~2015
3543776612985050638709712 ~2016
354400368117088007362311 ~2013
354404283117088085662311 ~2013
354415322397088306447911 ~2013
3544377799728355022397712 ~2015
3544420549321266523295912 ~2015
3544556809721267340858312 ~2015
Exponent Prime Factor Dig. Year
3544895166121269370996712 ~2015
3544909537321269457223912 ~2015
3544968754728359750037712 ~2015
354522741837090454836711 ~2013
354523284597090465691911 ~2013
354538583997090771679911 ~2013
3545655448121273932688712 ~2015
3545750116128366000928912 ~2015
354576028197091520563911 ~2013
354601424397092028487911 ~2013
3546031931985104766365712 ~2016
354625581237092511624711 ~2013
354629202717092584054311 ~2013
3546382213321278293279912 ~2015
3546510790335465107903112 ~2015
354668277237093365544711 ~2013
3546820887135468208871112 ~2015
354729050037094581000711 ~2013
354736815597094736311911 ~2013
354741237597094824751911 ~2013
354745473597094909471911 ~2013
354748841037094976820711 ~2013
354781845237095636904711 ~2013
354811428837096228576711 ~2013
354830641317096612826311 ~2013
Exponent Prime Factor Dig. Year
354844723437096894468711 ~2013
354844982997096899659911 ~2013
3548761828121292570968712 ~2015
354882729837097654596711 ~2013
354890517117097810342311 ~2013
354906140397098122807911 ~2013
354916413597098328271911 ~2013
354933440637098668812711 ~2013
354962406837099248136711 ~2013
354962927637099258552711 ~2013
354978676317099573526311 ~2013
3550125761928401006095312 ~2015
355031943717100638874311 ~2013
355038035397100760707911 ~2013
355074559797101491195911 ~2013
3550953642121305721852712 ~2015
3551178375721307070254312 ~2015
3551220008928409760071312 ~2015
355139595717102791914311 ~2013
3551458005163926244091912 ~2016
355148363696222...31848914 2023
355172180037103443600711 ~2013
355186098597103721971911 ~2013
355195933917103918678311 ~2013
355216909437104338188711 ~2013
Exponent Prime Factor Dig. Year
355229149917104582998311 ~2013
3552482205135524822051112 ~2015
355259298117105185962311 ~2013
3552683983721316103902312 ~2015
355272309717105446194311 ~2013
355285716717105714334311 ~2013
355305441117106108822311 ~2013
355307233317106144666311 ~2013
355327548117106550962311 ~2013
355330622637106612452711 ~2013
355339006373354...20132914 2023
355358449197107168983911 ~2013
3553633048335536330483112 ~2015
355403313717108066274311 ~2013
3554073309756865172955312 ~2016
3554105748121324634488712 ~2015
355414816917108296338311 ~2013
355431147237108622944711 ~2013
355440673197108813463911 ~2013
355452441237109048824711 ~2013
355454810997109096219911 ~2013
355459994037109199880711 ~2013
3554728969128437831752912 ~2015
355503422037110068440711 ~2013
355505695917110113918311 ~2013
Home
5.307.017 digits
e-mail
26-01-11