Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
351680097072510...93079914 2024
351680120637033602412711 ~2013
351690522117033810442311 ~2013
351702098037034041960711 ~2013
351705719397034114387911 ~2013
3517187238735171872387112 ~2015
351719437917034388758311 ~2013
351719471037034389420711 ~2013
351734059797034681195911 ~2013
3517413204121104479224712 ~2015
351751355637035027112711 ~2013
351775490037035509800711 ~2013
3517772400784426537616912 ~2016
351780424917035608498311 ~2013
351799143237035982864711 ~2013
3518243731721109462390312 ~2015
3518295600121109773600712 ~2015
351835124997036702499911 ~2013
351852781197037055623911 ~2013
351854863317037097266311 ~2013
3518596713721111580282312 ~2015
351866893797037337875911 ~2013
3518871273156301940369712 ~2016
351895101717037902034311 ~2013
351914564037038291280711 ~2013
Exponent Prime Factor Dig. Year
351914651397038293027911 ~2013
3519276743928154213951312 ~2015
351928607397038572147911 ~2013
351928674717038573494311 ~2013
351938057997038761159911 ~2013
351944732637038894652711 ~2013
351966687117039333742311 ~2013
3519800329749277204615912 ~2015
3520346224728162769797712 ~2015
3520528567321123171403912 ~2015
352070564037041411280711 ~2013
352076337117041526742311 ~2013
352088739237041774784711 ~2013
352109114517042182290311 ~2013
3521111303321126667819912 ~2015
3521118672177464610786312 ~2016
3521501862121129011172712 ~2015
352151465037043029300711 ~2013
352161251637043225032711 ~2013
3521714827721130288966312 ~2015
3522085216728176681733712 ~2015
3522100366356353605860912 ~2016
352237293117044745862311 ~2013
352316683197046333663911 ~2013
3523436900384562485607312 ~2016
Exponent Prime Factor Dig. Year
3523524031128188192248912 ~2015
352361161197047223223911 ~2013
352369850997047397019911 ~2013
3523858206121143149236712 ~2015
3523870313321143221879912 ~2015
352392322437047846448711 ~2013
352393518117047870362311 ~2013
352394364837047887296711 ~2013
352396489197047929783911 ~2013
352398772197047975443911 ~2013
352415963037048319260711 ~2013
3524206650735242066507112 ~2015
352459319397049186387911 ~2013
352467266997049345339911 ~2013
352489936797049798735911 ~2013
352490090517049801810311 ~2013
3525016133321150096799912 ~2015
352507010397050140207911 ~2013
352507244037050144880711 ~2013
352508969037050179380711 ~2013
352518178797050363575911 ~2013
352520285517050405710311 ~2013
352522801797050456035911 ~2013
352531253997050625079911 ~2013
352539855237050797104711 ~2013
Exponent Prime Factor Dig. Year
352554840837051096816711 ~2013
3525589254156409428065712 ~2016
3525622795321153736771912 ~2015
3525628783749358802971912 ~2015
352566963117051339262311 ~2013
3525915013128207320104912 ~2015
352605262437052105248711 ~2013
352605909237052118184711 ~2013
352608592197052171843911 ~2013
3526376277756422020443312 ~2016
3526396929721158381578312 ~2015
3526461190128211689520912 ~2015
3526638073321159828439912 ~2015
352665973917053319478311 ~2013
3526729621321160377727912 ~2015
352678357197053567143911 ~2013
352701749037054034980711 ~2013
3527089633721162537802312 ~2015
3527190494984652571877712 ~2016
352735076517054701530311 ~2013
352756074597055121491911 ~2013
352758864237055177284711 ~2013
352767408717055348174311 ~2013
352768750317055375006311 ~2013
3527710532949387947460712 ~2015
Home
5.307.017 digits
e-mail
26-01-11