Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18701574983937403149967912 ~2019
18702804433137405608866312 ~2019
1870392896873927...83427114 2023
1870644977991422...26799916 2025
18707392400337414784800712 ~2019
18709997252337419994504712 ~2019
18712762568337425525136712 ~2019
18715219232337430438464712 ~2019
18716009663937432019327912 ~2019
18716188529937432377059912 ~2019
18716279234337432558468712 ~2019
18717466783137434933566312 ~2019
18717592532337435185064712 ~2019
18717708989937435417979912 ~2019
18718867301937437734603912 ~2019
18721026163137442052326312 ~2019
1872387812538837...75141714 2025
18724975622337449951244712 ~2019
18726402227937452804455912 ~2019
18726895430337453790860712 ~2019
18731279465937462558931912 ~2019
18732000637137464001274312 ~2019
18735267067137470534134312 ~2019
18736031156337472062312712 ~2019
18736675682337473351364712 ~2019
Exponent Prime Factor Dig. Year
18737340355137474680710312 ~2019
18737697956337475395912712 ~2019
18737913014337475826028712 ~2019
18739128308337478256616712 ~2019
18741087068337482174136712 ~2019
18743586479937487172959912 ~2019
18743771168337487542336712 ~2019
18744018713937488037427912 ~2019
18744695227137489390454312 ~2019
18744808175937489616351912 ~2019
18746214608337492429216712 ~2019
18747598997937495197995912 ~2019
18748939417137497878834312 ~2019
18753302761137506605522312 ~2019
18754845791937509691583912 ~2019
18757177814337514355628712 ~2019
18757983965937515967931912 ~2019
18758733757137517467514312 ~2019
18758771705937517543411912 ~2019
18761064269937522128539912 ~2019
18764754673137529509346312 ~2019
18765045848337530091696712 ~2019
18766157660337532315320712 ~2019
18771017341137542034682312 ~2019
18773909054337547818108712 ~2019
Exponent Prime Factor Dig. Year
18775019120337550038240712 ~2019
18775746194337551492388712 ~2019
18775850345937551700691912 ~2019
18776866939137553733878312 ~2019
18778691947137557383894312 ~2019
18779757125937559514251912 ~2019
18780156941937560313883912 ~2019
18783187093137566374186312 ~2019
18784352329137568704658312 ~2019
1878970106414810...72409714 2024
18790528646337581057292712 ~2019
18791015360337582030720712 ~2019
18791326133937582652267912 ~2019
1879196242935374...54779914 2023
18792781520337585563040712 ~2019
18794982938337589965876712 ~2019
18795003967137590007934312 ~2019
18795254369937590508739912 ~2019
18795409409937590818819912 ~2019
18795697658337591395316712 ~2019
18795706442337591412884712 ~2019
1879572970192706...77073714 2024
1879807598293800...37423915 2023
18798175880337596351760712 ~2019
18801222299937602444599912 ~2019
Exponent Prime Factor Dig. Year
18802463171937604926343912 ~2019
18802531747137605063494312 ~2019
18802790965137605581930312 ~2019
1880306989038875...88221714 2024
18803616617937607233235912 ~2019
1880363186118762...47272714 2025
18803698376337607396752712 ~2019
18804230911137608461822312 ~2019
18804423062337608846124712 ~2019
1880770754692271...16655315 2025
18808399337937616798675912 ~2019
18808539326337617078652712 ~2019
18810990023937621980047912 ~2019
18813769892337627539784712 ~2019
18813837319137627674638312 ~2019
18814684967937629369935912 ~2019
18814964558337629929116712 ~2019
18818478620337636957240712 ~2019
18819219497937638438995912 ~2019
18819616645137639233290312 ~2019
18820487549937640975099912 ~2019
18820533749937641067499912 ~2019
18820653302337641306604712 ~2019
18822480044337644960088712 ~2019
18822522151137645044302312 ~2019
Home
4.888.230 digits
e-mail
25-06-29