Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
25647958379951295916759912 ~2020
25649614853951299229707912 ~2020
25652606005151305212010312 ~2020
25653676226351307352452712 ~2020
25656336680351312673360712 ~2020
25658300081951316600163912 ~2020
25658752604351317505208712 ~2020
25660879633151321759266312 ~2020
25662502520351325005040712 ~2020
25662529039151325058078312 ~2020
25664640433151329280866312 ~2020
25669883222351339766444712 ~2020
25670353745951340707491912 ~2020
25670519009951341038019912 ~2020
25670933996351341867992712 ~2020
25676665427951353330855912 ~2020
25678446446351356892892712 ~2020
25680948056351361896112712 ~2020
25682237444351364474888712 ~2020
25684254161951368508323912 ~2020
25685265565151370531130312 ~2020
25689061943951378123887912 ~2020
25690229159951380458319912 ~2020
25690709690351381419380712 ~2020
25691240677151382481354312 ~2020
Exponent Prime Factor Dig. Year
25692301598351384603196712 ~2020
2569302198016114...31263914 2024
25694000012351388000024712 ~2020
25698015530351396031060712 ~2020
25701399152351402798304712 ~2020
25705502029151411004058312 ~2020
25710863969951421727939912 ~2020
25718693633951437387267912 ~2020
25722568135151445136270312 ~2020
25723850149151447700298312 ~2020
25724090351951448180703912 ~2020
25724288921951448577843912 ~2020
25728310631951456621263912 ~2020
25730624312351461248624712 ~2020
25732159831151464319662312 ~2020
25733332697951466665395912 ~2020
25733421343151466842686312 ~2020
25733868428351467736856712 ~2020
25733883401951467766803912 ~2020
25735761779951471523559912 ~2020
25735784407151471568814312 ~2020
25736919632351473839264712 ~2020
2573699874491127...50266315 2025
2573986167538854...16303314 2024
2573987621773227...76995915 2025
Exponent Prime Factor Dig. Year
25742833055951485666111912 ~2020
25743076751951486153503912 ~2020
25746154925951492309851912 ~2020
2574619016212471...55561714 2024
2574626328112471...74985714 2024
25747513880351495027760712 ~2020
25750015034351500030068712 ~2020
25750937795951501875591912 ~2020
25752320803151504641606312 ~2020
25754204893151508409786312 ~2020
25754729713151509459426312 ~2020
25754786054351509572108712 ~2020
25755688519151511377038312 ~2020
25758713102351517426204712 ~2020
25759214720351518429440712 ~2020
25759994785151519989570312 ~2020
25762965901151525931802312 ~2020
25763239783151526479566312 ~2020
25764231965951528463931912 ~2020
25765002014351530004028712 ~2020
25767826316351535652632712 ~2020
25770975989951541951979912 ~2020
25771078519151542157038312 ~2020
25774717645151549435290312 ~2020
25775243029151550486058312 ~2020
Exponent Prime Factor Dig. Year
25777332470351554664940712 ~2020
25778173466351556346932712 ~2020
25782951308351565902616712 ~2020
25785608054351571216108712 ~2020
25785713012351571426024712 ~2020
25785829049951571658099912 ~2020
25786311842351572623684712 ~2020
25789100138351578200276712 ~2020
25792138091951584276183912 ~2020
25793487587951586975175912 ~2020
2579497092793972...22896714 2024
2579619733911238...72276914 2024
2579830710779906...29356914 2023
25802510882351605021764712 ~2020
25803048581951606097163912 ~2020
25803252811151606505622312 ~2020
25805840240351611680480712 ~2020
25808758031951617516063912 ~2020
25810672069151621344138312 ~2020
25811017856351622035712712 ~2020
25814594665151629189330312 ~2020
25814930749151629861498312 ~2020
25816979471951633958943912 ~2020
25819097953151638195906312 ~2020
25819139582351638279164712 ~2020
Home
4.768.925 digits
e-mail
25-05-04