Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
20362097855940724195711912 ~2019
20362195645140724391290312 ~2019
20362583485140725166970312 ~2019
20362942985940725885971912 ~2019
20363324435940726648871912 ~2019
20365893620340731787240712 ~2019
2036655501111405...57659115 2025
20367559129140735118258312 ~2019
20368006537140736013074312 ~2019
20370564446340741128892712 ~2019
20370698618340741397236712 ~2019
20371050917940742101835912 ~2019
20375328301140750656602312 ~2019
20378414144340756828288712 ~2019
20380668169140761336338312 ~2019
20385480788340770961576712 ~2019
20386408537140772817074312 ~2019
20388020081940776040163912 ~2019
20388780301140777560602312 ~2019
20388885560340777771120712 ~2019
20389274669940778549339912 ~2019
20389674389940779348779912 ~2019
20389803481140779606962312 ~2019
20391434803140782869606312 ~2019
20396085536340792171072712 ~2019
Exponent Prime Factor Dig. Year
20396896171140793792342312 ~2019
20400648955140801297910312 ~2019
20400941071140801882142312 ~2019
20404315399140808630798312 ~2019
20406867260340813734520712 ~2019
20407124627940814249255912 ~2019
20407201778340814403556712 ~2019
20409085075140818170150312 ~2019
20410286276340820572552712 ~2019
20410935749940821871499912 ~2019
20411189435940822378871912 ~2019
20422190888340844381776712 ~2019
20424222203940848444407912 ~2019
20425534519140851069038312 ~2019
20425639943940851279887912 ~2019
20426146103940852292207912 ~2019
20426351203140852702406312 ~2019
20427683396340855366792712 ~2019
20428469467140856938934312 ~2019
20431167575940862335151912 ~2019
20435300465940870600931912 ~2019
2043622783192820...40802314 2024
20438778865140877557730312 ~2019
20439018077940878036155912 ~2019
20440147667940880295335912 ~2019
Exponent Prime Factor Dig. Year
20440861699140881723398312 ~2019
20443392515940886785031912 ~2019
20445726481140891452962312 ~2019
20448339896340896679792712 ~2019
20449015817940898031635912 ~2019
20449555147140899110294312 ~2019
20456247866340912495732712 ~2019
20456316710340912633420712 ~2019
20456344189140912688378312 ~2019
20457579595140915159190312 ~2019
20458869824340917739648712 ~2019
20461637209140923274418312 ~2019
20462461421940924922843912 ~2019
20463605401140927210802312 ~2019
20464836470340929672940712 ~2019
20471868263940943736527912 ~2019
20472812096340945624192712 ~2019
20475425108340950850216712 ~2019
20475861521940951723043912 ~2019
20476926145140953852290312 ~2019
20480443643940960887287912 ~2019
2048412281293072...21935114 2024
20484720302340969440604712 ~2019
20485393463940970786927912 ~2019
20485861543140971723086312 ~2019
Exponent Prime Factor Dig. Year
20485929853140971859706312 ~2019
20485969268340971938536712 ~2019
20486334769140972669538312 ~2019
20488142537940976285075912 ~2019
20488548440340977096880712 ~2019
20489998969140979997938312 ~2019
20490934211940981868423912 ~2019
20491212596340982425192712 ~2019
20495958080340991916160712 ~2019
20496443333940992886667912 ~2019
20496964171140993928342312 ~2019
20497457282340994914564712 ~2019
20497934753940995869507912 ~2019
20498147881140996295762312 ~2019
20499033121140998066242312 ~2019
20500000697941000001395912 ~2019
2050493986131291...12619115 2023
20506089365941012178731912 ~2019
2050665530573568...23191914 2024
20506961657941013923315912 ~2019
20507249828341014499656712 ~2019
20509713950341019427900712 ~2019
20510787361141021574722312 ~2019
20511866845141023733690312 ~2019
20515052167141030104334312 ~2019
Home
4.768.925 digits
e-mail
25-05-04