Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9772567334319545134668712 ~2017
9773293587758639761526312 ~2018
9773393024319546786048712 ~2017
9774145862319548291724712 ~2017
9774220142319548440284712 ~2017
9774296311358645777867912 ~2018
9774760556319549521112712 ~2017
9775131313778201050509712 ~2018
9775560733758653364402312 ~2018
9776011343919552022687912 ~2017
9776056513119552113026312 ~2017
9777266174319554532348712 ~2017
9778148353758668890122312 ~2018
9778627081119557254162312 ~2017
9778830182319557660364712 ~2017
9779475527358676853163912 ~2018
9779973875919559947751912 ~2017
9782352164319564704328712 ~2017
9782381041758694286250312 ~2018
9782670715119565341430312 ~2017
9784962932319569925864712 ~2017
9785081582319570163164712 ~2017
9785170468158711022808712 ~2018
9785792402319571584804712 ~2017
9786254966319572509932712 ~2017
Exponent Prime Factor Dig. Year
9786442067978291536543312 ~2018
9786580526319573161052712 ~2017
978687585533425...49355114 2024
9786969260319573938520712 ~2017
9787069001919574138003912 ~2017
9787280135919574560271912 ~2017
9787784729919575569459912 ~2017
9787929539919575859079912 ~2017
9788506561778308052493712 ~2018
9788988425919577976851912 ~2017
9789858455919579716911912 ~2017
9790023638978320189111312 ~2018
9790395149358742370895912 ~2018
9790469821119580939642312 ~2017
9791999687919583999375912 ~2017
9792016208319584032416712 ~2017
9792758684319585517368712 ~2017
9792815594319585631188712 ~2017
9793127102319586254204712 ~2017
9793326278978346610231312 ~2018
9793629223119587258446312 ~2017
9793650593919587301187912 ~2017
9794350917758766105506312 ~2018
9795227281119590454562312 ~2017
9795337543119590675086312 ~2017
Exponent Prime Factor Dig. Year
9796717550319593435100712 ~2017
9797313830319594627660712 ~2017
9797335597119594671194312 ~2017
9798446839119596893678312 ~2017
9798622544319597245088712 ~2017
9798879788319597759576712 ~2017
9798923651919597847303912 ~2017
9799086727758794520366312 ~2018
9800400389919600800779912 ~2017
9800836103919601672207912 ~2017
9800856743919601713487912 ~2017
9801629651919603259303912 ~2017
9802298738319604597476712 ~2017
9802308629919604617259912 ~2017
9802318001919604636003912 ~2017
9802722050319605444100712 ~2017
9802794832158816768992712 ~2018
9804149699919608299399912 ~2017
9805360427919610720855912 ~2017
9805692737919611385475912 ~2017
9806361269358838167615912 ~2018
9806471681919612943363912 ~2017
9806555138319613110276712 ~2017
9806880674319613761348712 ~2017
9806939257178455514056912 ~2018
Exponent Prime Factor Dig. Year
9807152333919614304667912 ~2017
9808897055919617794111912 ~2017
9809079451778472635613712 ~2018
9811114109919622228219912 ~2017
981155839012668...82107314 2024
9812160103778497280829712 ~2018
9812469701919624939403912 ~2017
9812531301758875187810312 ~2018
9813980990319627961980712 ~2017
9814526119178516208952912 ~2018
9815229703119630459406312 ~2017
9815528075919631056151912 ~2017
9816282128319632564256712 ~2017
9816347815119632695630312 ~2017
9816665987919633331975912 ~2017
9817110919119634221838312 ~2017
9817267433919634534867912 ~2017
9817317469119634634938312 ~2017
9817413140978539305127312 ~2018
9817872269919635744539912 ~2017
9817945269758907671618312 ~2018
9818209457919636418915912 ~2017
9818702524778549620197712 ~2018
9819118823919638237647912 ~2017
9819195889778553567117712 ~2018
Home
4.768.925 digits
e-mail
25-05-04