Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9726164624319452329248712 ~2017
9726747773919453495547912 ~2017
9728402402319456804804712 ~2017
9728531725177828253800912 ~2018
9728542757919457085515912 ~2017
9728607275919457214551912 ~2017
9728748776319457497552712 ~2017
9729600535119459201070312 ~2017
9729622892319459245784712 ~2017
9729711113919459422227912 ~2017
9729715687177837725496912 ~2018
9729763352319459526704712 ~2017
9731498005119462996010312 ~2017
9731705857119463411714312 ~2017
9732074138319464148276712 ~2017
9732338660319464677320712 ~2017
9732609581919465219163912 ~2017
9732987103119465974206312 ~2017
9733354967358400129803912 ~2018
9733535609919467071219912 ~2017
9733616120319467232240712 ~2017
9733769804319467539608712 ~2017
9735410648319470821296712 ~2017
9735462443919470924887912 ~2017
9735734869119471469738312 ~2017
Exponent Prime Factor Dig. Year
9736668455919473336911912 ~2017
9738134575777905076605712 ~2018
9739050695919478101391912 ~2017
9739316184158435897104712 ~2018
9739603391919479206783912 ~2017
9740542721919481085443912 ~2017
9741159097777929272781712 ~2018
9741173527758447041166312 ~2018
9741175519119482351038312 ~2017
9741325158158447950948712 ~2018
9741799160319483598320712 ~2017
9741843380319483686760712 ~2017
9742080374319484160748712 ~2017
9742428667119484857334312 ~2017
9742562161177940497288912 ~2018
9742965397777943723181712 ~2018
9743435747919486871495912 ~2017
9743445387758460672326312 ~2018
9744540919758467245518312 ~2018
9744758957919489517915912 ~2017
9745340468319490680936712 ~2017
9745524797919491049595912 ~2017
9745897669119491795338312 ~2017
974619371638865...43464915 2024
9746872357119493744714312 ~2017
Exponent Prime Factor Dig. Year
9746931557919493863115912 ~2017
9747081773919494163547912 ~2017
9747158681919494317363912 ~2017
9748427453919496854907912 ~2017
9749169606158495017636712 ~2018
9749893472319499786944712 ~2017
9750003619758500021718312 ~2018
9750545551119501091102312 ~2017
9752802083919505604167912 ~2017
9753215381919506430763912 ~2017
9755011680158530070080712 ~2018
9755236957119510473914312 ~2017
9756248153919512496307912 ~2017
9756434191178051473528912 ~2018
9756522806319513045612712 ~2017
9756660011919513320023912 ~2017
9757170541758543023250312 ~2018
9757763780319515527560712 ~2017
9757928989119515857978312 ~2017
9758267141919516534283912 ~2017
9758301395919516602791912 ~2017
9758586710319517173420712 ~2017
9758677909119517355818312 ~2017
9758811733119517623466312 ~2017
9758814389919517628779912 ~2017
Exponent Prime Factor Dig. Year
9759511572158557069432712 ~2018
9759954284978079634279312 ~2018
9760037575119520075150312 ~2017
9760618477119521236954312 ~2017
9760695458319521390916712 ~2017
9761614084778092912677712 ~2018
9762488921358574933527912 ~2018
9764119049919528238099912 ~2017
9764613587978116908703312 ~2018
9764688065919529376131912 ~2017
9764795309919529590619912 ~2017
9765527348319531054696712 ~2017
9765843301119531686602312 ~2017
9765899039919531798079912 ~2017
9766748309919533496619912 ~2017
9767065964319534131928712 ~2017
976730945872812...24105714 2024
976785259077755...57015914 2023
9768041558978144332471312 ~2018
9768306800978146454407312 ~2018
9768307009119536614018312 ~2017
9768337220319536674440712 ~2017
9768657275919537314551912 ~2017
9768796505919537593011912 ~2017
9770303515119540607030312 ~2017
Home
4.768.925 digits
e-mail
25-05-04