Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6477275389112954550778312 ~2015
6477284503738863707022312 ~2017
6477875939912955751879912 ~2015
6478147519112956295038312 ~2015
6478331639912956663279912 ~2015
6478703111912957406223912 ~2015
6478903619912957807239912 ~2015
6478951508312957903016712 ~2015
6478996130312957992260712 ~2015
6479139820751833118565712 ~2017
6479154467912958308935912 ~2015
6479730500312959461000712 ~2015
6480268712312960537424712 ~2015
6480338682138882032092712 ~2017
6480581477912961162955912 ~2015
6480787139912961574279912 ~2015
6480788528312961577056712 ~2015
6480919777738885518666312 ~2017
6480934792151847478336912 ~2017
6482384942312964769884712 ~2015
6482700013112965400026312 ~2015
6483324365912966648731912 ~2015
6483658654138901951924712 ~2017
6484172479112968344958312 ~2015
6485474603912970949207912 ~2015
Exponent Prime Factor Dig. Year
6485773627738914641766312 ~2017
6486033753738916202522312 ~2017
6486110267912972220535912 ~2015
6486175664312972351328712 ~2015
6486218701112972437402312 ~2015
6486716917738920301506312 ~2017
648675028791200...32615115 2025
6487015871912974031743912 ~2015
6487493441912974986883912 ~2015
6487720159112975440318312 ~2015
6488084671112976169342312 ~2015
6489071513912978143027912 ~2015
6489811583912979623167912 ~2015
6489900815912979801631912 ~2015
6490885474138945312844712 ~2017
6491070449912982140899912 ~2015
6491118209951928945679312 ~2017
6491280482312982560964712 ~2015
6491806639751934453117712 ~2017
6491962889912983925779912 ~2015
6492350156312984700312712 ~2015
6492427796312984855592712 ~2015
6492805076312985610152712 ~2015
6493662380312987324760712 ~2015
6493879105112987758210312 ~2015
Exponent Prime Factor Dig. Year
6493884431912987768863912 ~2015
6494468480312988936960712 ~2015
6494688409112989376818312 ~2015
6495373760312990747520712 ~2015
6495396380312990792760712 ~2015
6495451974138972711844712 ~2017
6495502128138973012768712 ~2017
6495626124138973756744712 ~2017
6495655547912991311095912 ~2015
6495950639912991901279912 ~2015
6496022719112992045438312 ~2015
6496097021912992194043912 ~2015
6497169157338983014943912 ~2017
6497417420312994834840712 ~2015
6498379071738990274430312 ~2017
6498906961112997813922312 ~2015
6498999695912997999391912 ~2015
6499120799912998241599912 ~2015
6499671343751997370749712 ~2017
6500480825913000961651912 ~2015
650052588372327...66364714 2023
6500643706139003862236712 ~2017
6500700503913001401007912 ~2015
6500882743113001765486312 ~2015
6501052859339006317155912 ~2017
Exponent Prime Factor Dig. Year
6501085559913002171119912 ~2015
6501251333913002502667912 ~2015
6501422983113002845966312 ~2015
6501686639913003373279912 ~2015
6501801551913003603103912 ~2015
6501890126313003780252712 ~2015
6501916703913003833407912 ~2015
6502077626313004155252712 ~2015
6502300889913004601779912 ~2015
6502303424313004606848712 ~2015
6502624028313005248056712 ~2015
6502715891913005431783912 ~2015
6503469875913006939751912 ~2015
6503852173113007704346312 ~2015
6504189425913008378851912 ~2015
6504663346139027980076712 ~2017
6505182247113010364494312 ~2015
6505586165913011172331912 ~2015
6505990651113011981302312 ~2015
6506193070152049544560912 ~2017
6506413880313012827760712 ~2015
6506425756139038554536712 ~2017
6506434940313012869880712 ~2015
6506580818313013161636712 ~2015
6506659762152053278096912 ~2017
Home
4.768.925 digits
e-mail
25-05-04