Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6363353731338180122387912 ~2017
6363563741912727127483912 ~2015
6363661835912727323671912 ~2015
6363828309738182969858312 ~2017
636420574032515...85665715 2024
6364739484138188436904712 ~2017
6364783757912729567515912 ~2015
6364844904138189069424712 ~2017
6365245749738191474498312 ~2017
6366366133150930929064912 ~2017
6366558728312733117456712 ~2015
6366742201963667422019112 ~2017
6367279163912734558327912 ~2015
6367543814312735087628712 ~2015
6367626971912735253943912 ~2015
6367757513950942060111312 ~2017
6368136541112736273082312 ~2015
6368149865912736299731912 ~2015
6368272789738209636738312 ~2017
6368494085912736988171912 ~2015
6368964581912737929163912 ~2015
6369024539338214147235912 ~2017
6369033632312738067264712 ~2015
6369209563338215257379912 ~2017
6369604969112739209938312 ~2015
Exponent Prime Factor Dig. Year
6369714347912739428695912 ~2015
6369722501912739445003912 ~2015
6369960761912739921523912 ~2015
6371078005112742156010312 ~2015
6371199983912742399967912 ~2015
6371226463112742452926312 ~2015
6371359880312742719760712 ~2015
6371949973112743899946312 ~2015
6372279944312744559888712 ~2015
6372445235912744890471912 ~2015
6373564450750988515605712 ~2017
6373640167112747280334312 ~2015
6373680809912747361619912 ~2015
6373681741112747363482312 ~2015
6374275436312748550872712 ~2015
6374317763912748635527912 ~2015
6374368219963743682199112 ~2017
6374999639912749999279912 ~2015
6375306176312750612352712 ~2015
6375592475912751184951912 ~2015
6375946141112751892282312 ~2015
6375996272312751992544712 ~2015
6376927752763769277527112 ~2017
6377063057951016504463312 ~2017
6377112191912754224383912 ~2015
Exponent Prime Factor Dig. Year
6377564719112755129438312 ~2015
6377584232312755168464712 ~2015
6378086467112756172934312 ~2015
6378633122312757266244712 ~2015
6378859375112757718750312 ~2015
6378914756312757829512712 ~2015
6379482436138276894616712 ~2017
6379663879112759327758312 ~2015
6379867999112759735998312 ~2015
6380277146312760554292712 ~2015
638036971512858...32364914 2024
6380920745912761841491912 ~2015
6381093038312762186076712 ~2015
6381136921751049095373712 ~2017
6381622330138289733980712 ~2017
6382735000751061880005712 ~2017
6382806625112765613250312 ~2015
6383577131912767154263912 ~2015
6384294806951074358455312 ~2017
6384592519112769185038312 ~2015
6384859380138309156280712 ~2017
6384930970138309585820712 ~2017
6385261724312770523448712 ~2015
6386035151912772070303912 ~2015
6386153052138316918312712 ~2017
Exponent Prime Factor Dig. Year
6387035065963870350659112 ~2017
6387078692312774157384712 ~2015
6387358669751098869357712 ~2017
6387565481912775130963912 ~2015
6387659149112775318298312 ~2015
6387996989951103975919312 ~2017
6388196462312776392924712 ~2015
6388841359112777682718312 ~2015
6389110301912778220603912 ~2015
6389526529738337159178312 ~2017
6389612948312779225896712 ~2015
6389938066138339628396712 ~2017
6390302575738341815454312 ~2017
6390346375151122771000912 ~2017
6390487781912780975563912 ~2015
6390761632138344569792712 ~2017
6391001183912782002367912 ~2015
6391256216312782512432712 ~2015
6391312910312782625820712 ~2015
639139049031765...34208715 2023
6391639513112783279026312 ~2015
6391782083912783564167912 ~2015
6391883707112783767414312 ~2015
6392507521112785015042312 ~2015
6392819168312785638336712 ~2015
Home
4.768.925 digits
e-mail
25-05-04