Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
110815091992216301839911 ~2009
110815092232216301844711 ~2009
110816160112216323202311 ~2009
110821475992216429519911 ~2009
110822036032216440720711 ~2009
110829159832216583196711 ~2009
110831808416649908504711 ~2011
110835880318866870424911 ~2011
110849743912216994878311 ~2009
110850110392217002207911 ~2009
110850593992217011879911 ~2009
110853504832217070096711 ~2009
110854609432217092188711 ~2009
110855644912217112898311 ~2009
110861898112217237962311 ~2009
110863393376651803602311 ~2011
1108643107128824720784712 ~2012
1108646023911086460239112 ~2011
110871213232217424264711 ~2009
110883068336652984099911 ~2011
110883123112217662462311 ~2009
110885749432217714988711 ~2009
110887427992217748559911 ~2009
1108875294711088752947112 ~2011
110891730712217834614311 ~2009
Exponent Prime Factor Dig. Year
110891885032217837700711 ~2009
110897172112217943442311 ~2009
110897856832217957136711 ~2009
110900664832218013296711 ~2009
110903119432218062388711 ~2009
110905965776654357946311 ~2011
110909008192218180163911 ~2009
110912773912218255478311 ~2009
110913824818873105984911 ~2011
110916933112218338662311 ~2009
110917506712218350134311 ~2009
110921588512218431770311 ~2009
1109228053317747648852912 ~2012
110924191792218483835911 ~2009
110925544432218510888711 ~2009
110927901232218558024711 ~2009
110929767592218595351911 ~2009
110930893792218617875911 ~2009
110932202512218644050311 ~2009
110933449192218668983911 ~2009
1109401510311094015103112 ~2011
110942943112218858862311 ~2009
110946448616656786916711 ~2011
110948757176656925430311 ~2011
110952018112219040362311 ~2009
Exponent Prime Factor Dig. Year
110963304112219266082311 ~2009
110966663632219333272711 ~2009
110967015232219340304711 ~2009
110968012978877441037711 ~2011
110985402592219708051911 ~2009
110986644712219732894311 ~2009
110989570912219791418311 ~2009
110994943192219898863911 ~2009
110995819912219916398311 ~2009
1109966173333298985199112 ~2012
110997107992219942159911 ~2009
110997276232219945524711 ~2009
111002319112220046382311 ~2009
111007472392220149447911 ~2009
111017254432220345088711 ~2009
111033798112220675962311 ~2009
111035005192220700103911 ~2009
111036413032220728260711 ~2009
1110381966711103819667112 ~2011
111039248776662354926311 ~2011
111041004112220820082311 ~2009
111042875632220857512711 ~2009
111044886736662693203911 ~2011
111055043632221100872711 ~2009
1110555618117768889889712 ~2012
Exponent Prime Factor Dig. Year
111055610032221112200711 ~2009
111056578192221131563911 ~2009
111057926936663475615911 ~2011
111058183432221163668711 ~2009
111059786576663587194311 ~2011
111061152598884892207311 ~2011
111062646778885011741711 ~2011
111065745136663944707911 ~2011
111066359992221327199911 ~2009
111069449032221388980711 ~2009
111070597912221411958311 ~2009
1110724604915550144468712 ~2012
111074299192221485983911 ~2009
111076505392221530107911 ~2009
111078005632221560112711 ~2009
111086406112221728122311 ~2009
111087699232221753984711 ~2009
111088044712221760894311 ~2009
111092679712221853594311 ~2009
1110966682311109666823112 ~2011
111097276312221945526311 ~2009
111099124912221982498311 ~2009
111101421592222028431911 ~2009
111101544592222030891911 ~2009
111111170632222223412711 ~2009
Home
5.187.277 digits
e-mail
25-11-17