Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
96258163311925163266311 ~2009
96262151031925243020711 ~2009
96265479375775928762311 ~2010
96266346831925326936711 ~2009
96270924111925418482311 ~2009
96274116177701929293711 ~2010
96276028191925520563911 ~2009
96277885191925557703911 ~2009
962846906323108325751312 ~2012
96287860911925757218311 ~2009
96288713031925774260711 ~2009
96290612719629061271111 ~2011
96290726991925814539911 ~2009
962919193125035899020712 ~2012
963005383315408086132912 ~2011
96303228177704258253711 ~2010
96304072431926081448711 ~2009
96307361031926147220711 ~2009
96312049911926240998311 ~2009
96313455111926269102311 ~2009
96318756415779125384711 ~2010
96318791391926375827911 ~2009
96319892991926397859911 ~2009
963282402128898472063112 ~2012
96333580791926671615911 ~2009
Exponent Prime Factor Dig. Year
96339623631926792472711 ~2009
96348755991926975119911 ~2009
96349772511926995450311 ~2009
96353238111927064762311 ~2009
96353772111927075442311 ~2009
96355664391927113287911 ~2009
96355727031927114540711 ~2009
96360135799636013579111 ~2011
96360341391927206827911 ~2009
96364836831927296736711 ~2009
96365024391927300487911 ~2009
96366584575781995074311 ~2010
96371515911927430318311 ~2009
96373440717709875256911 ~2010
96377238711927544774311 ~2009
96377540391927550807911 ~2009
96378366231927567324711 ~2009
96381962031927639240711 ~2009
96383869935783032195911 ~2010
96392833431927856668711 ~2009
96395804511927916090311 ~2009
96398218399639821839111 ~2011
96398562679639856267111 ~2011
96400957791928019155911 ~2009
96401130711928022614311 ~2009
Exponent Prime Factor Dig. Year
96402226431928044528711 ~2009
96404679711928093594311 ~2009
96407838111928156762311 ~2009
96413753391928275067911 ~2009
96417626391928352527911 ~2009
96419779791928395595911 ~2009
96421646991928432939911 ~2009
96428038317714243064911 ~2010
96428407431928568148711 ~2009
96434998191928699963911 ~2009
96437098191928741963911 ~2009
96437915935786274955911 ~2010
96450096111929001922311 ~2009
96457269775787436186311 ~2010
96457600311929152006311 ~2009
96464770911929295418311 ~2009
96465453231929309064711 ~2009
96474733917717978712911 ~2010
96478008591929560171911 ~2009
964805143713507272011912 ~2011
96488446311929768926311 ~2009
96489343911929786878311 ~2009
964902769117368249843912 ~2011
96491352111929827042311 ~2009
964950287313509304022312 ~2011
Exponent Prime Factor Dig. Year
96500832591930016651911 ~2009
96500867391930017347911 ~2009
96503226831930064536711 ~2009
96505621431930112428711 ~2009
96506111991930122239911 ~2009
96511212477720896997711 ~2010
96511368975790682138311 ~2010
96514949031930298980711 ~2009
96517138575791028314311 ~2010
96517571631930351432711 ~2009
96517662591930353251911 ~2009
96524377191930487543911 ~2009
96525684831930513696711 ~2009
96529212591930584251911 ~2009
96534539631930690792711 ~2009
96536077911930721558311 ~2009
96537978591930759571911 ~2009
96538345791930766915911 ~2009
965439694315447035108912 ~2011
96544983831930899676711 ~2009
96562471575793748294311 ~2010
965678401713519497623912 ~2011
96572397831931447956711 ~2009
96576233511931524670311 ~2009
96580540791931610815911 ~2009
Home
5.247.179 digits
e-mail
25-12-14