Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
269622435235392448704711 ~2012
2696608986116179653916712 ~2014
2696715110921573720887312 ~2014
269673339235393466784711 ~2012
2696733830364721611927312 ~2015
2696819943126968199431112 ~2014
269696169835393923396711 ~2012
269698694035393973880711 ~2012
269700840595394016811911 ~2012
2697166686116183000116712 ~2014
2697173478116183040868712 ~2014
269751572395395031447911 ~2012
2697632787126976327871112 ~2014
269775492835395509856711 ~2012
2697834747716187008486312 ~2014
269797907035395958140711 ~2012
269798603395395972067911 ~2012
269810676715396213534311 ~2012
269811323515396226470311 ~2012
269846056435396921128711 ~2012
269849464915396989298311 ~2012
2698707675716192246054312 ~2014
269872557595397451151911 ~2012
269874315115397486302311 ~2012
269878028515397560570311 ~2012
Exponent Prime Factor Dig. Year
269879565595397591311911 ~2012
2698960632726989606327112 ~2014
269904276835398085536711 ~2012
2699103948743185663179312 ~2015
269914423195398288463911 ~2012
269933794315398675886311 ~2012
269974992715399499854311 ~2012
270027689515400553790311 ~2012
270027882595400557651911 ~2012
2700301115316201806691912 ~2014
270070382035401407640711 ~2012
270071937235401438744711 ~2012
2700836629121606693032912 ~2014
2700921337764822112104912 ~2015
270107279515402145590311 ~2012
2701117515143217880241712 ~2015
270117649915402352998311 ~2012
270118603915402372078311 ~2012
2701195081721609560653712 ~2014
270136730035402734600711 ~2012
270151432195403028643911 ~2012
270163255795403265115911 ~2012
270173297395403465947911 ~2012
270189992635403799852711 ~2012
270201242035404024840711 ~2012
Exponent Prime Factor Dig. Year
270215896315404317926311 ~2012
2702199637721617597101712 ~2014
2702229518921617836151312 ~2014
270231189715404623794311 ~2012
270238007995404760159911 ~2012
270245825035404916500711 ~2012
2702482751316214896507912 ~2014
270256058635405121172711 ~2012
270265748035405314960711 ~2012
2702718949316216313695912 ~2014
270281729395405634587911 ~2012
270290348995405806979911 ~2012
270293111635405862232711 ~2012
270295169995405903399911 ~2012
2702995039316217970235912 ~2014
2703089677721624717421712 ~2014
270314023795406280475911 ~2012
2703621738743257947819312 ~2015
2703738143316222428859912 ~2014
270375657595407513151911 ~2012
270385872235407717444711 ~2012
270391485115407829702311 ~2012
270403064395408061287911 ~2012
2704041262116224247572712 ~2014
2704196719121633573752912 ~2014
Exponent Prime Factor Dig. Year
270427263835408545276711 ~2012
2704363248116226179488712 ~2014
2704368337716226210026312 ~2014
270436964995408739299911 ~2012
2704392948743270287179312 ~2015
270441570835408831416711 ~2012
270446857195408937143911 ~2012
270458917315409178346311 ~2012
270460318195409206363911 ~2012
270462295195409245903911 ~2012
270481211515409624230311 ~2012
270482270395409645407911 ~2012
2704855009316229130055912 ~2014
270489672595409793451911 ~2012
270505887835410117756711 ~2012
2705500142921644001143312 ~2014
270555248515411104970311 ~2012
270577488595411549771911 ~2012
2705808703121646469624912 ~2014
2705929256921647434055312 ~2014
270594525715411890514311 ~2012
2706001979316236011875912 ~2014
2706348489743301575835312 ~2015
270635598715412711974311 ~2012
2706385823316238314939912 ~2014
Home
4.768.925 digits
e-mail
25-05-04