Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97710033111954200662311 ~2009
97721726391954434527911 ~2009
97725484311954509686311 ~2009
97729376511954587530311 ~2009
97732999375863979962311 ~2010
97733483631954669672711 ~2009
97738042911954760858311 ~2009
97744450975864667058311 ~2010
97754017191955080343911 ~2009
97754635311955092706311 ~2009
97756944975865416698311 ~2010
97759506831955190136711 ~2009
97766865711955337314311 ~2009
97767824511955356490311 ~2009
97769988231955399764711 ~2009
97772222391955444447911 ~2009
97777423975866645438311 ~2010
97779472935866768375911 ~2010
97781358831955627176711 ~2009
97782052191955641043911 ~2009
97783603911955672078311 ~2009
97783840617822707248911 ~2011
97784139711955682794311 ~2009
97787554431955751088711 ~2009
97790116911955802338311 ~2009
Exponent Prime Factor Dig. Year
97790559591955811191911 ~2009
97795194111955903882311 ~2009
97799450991955989019911 ~2009
97801025391956020507911 ~2009
97804846431956096928711 ~2009
97810015639781001563111 ~2011
97815612591956312251911 ~2009
97826406831956528136711 ~2009
97836226797826898143311 ~2011
97837449417826995952911 ~2011
97838526231956770524711 ~2009
97838634231956772684711 ~2009
97842800031956856000711 ~2009
97843546911956870938311 ~2009
978465958137181706407912 ~2012
97849491711956989834311 ~2009
978508726923484209445712 ~2012
97860802677828864213711 ~2011
97861283511957225670311 ~2009
97862009391957240187911 ~2009
97865340711957306814311 ~2009
978654225715658467611312 ~2011
97867924191957358483911 ~2009
97882543791957650875911 ~2009
97885740775873144446311 ~2010
Exponent Prime Factor Dig. Year
97888058239788805823111 ~2011
97891952335873517139911 ~2010
97892392791957847855911 ~2009
97895573397831645871311 ~2011
97900414191958008283911 ~2009
97901379711958027594311 ~2009
97902958917832236712911 ~2011
97903804191958076083911 ~2009
97906617615874397056711 ~2010
97909981311958199626311 ~2009
97911204831958224096711 ~2009
97930004031958600080711 ~2009
979301209329379036279112 ~2012
97930179591958603591911 ~2009
97931852877834548229711 ~2011
97934188519793418851111 ~2011
97935544735876132683911 ~2010
97935655431958713108711 ~2009
97940068791958801375911 ~2009
979406095713711685339912 ~2011
979411247313711757462312 ~2011
97943376015876602560711 ~2010
97946823775876809426311 ~2010
97947098031958941960711 ~2009
97948949511958978990311 ~2009
Exponent Prime Factor Dig. Year
97951797591959035951911 ~2009
97951963815877117828711 ~2010
97953363711959067274311 ~2009
97957707231959154144711 ~2009
97959678735877580723911 ~2010
97961084631959221692711 ~2009
97961516991959230339911 ~2009
979626169713714766375912 ~2011
97964787591959295751911 ~2009
97966222575877973354311 ~2010
97966541511959330830311 ~2009
97969692231959393844711 ~2009
97982585391959651707911 ~2009
97985066031959701320711 ~2009
97988311311959766226311 ~2009
979884643941155155043912 ~2012
97990370511959807410311 ~2009
97993245111959864902311 ~2009
979956106923518946565712 ~2012
97998809031959976180711 ~2009
98000141535880008491911 ~2010
98001350991960027019911 ~2009
98004746991960094939911 ~2009
98006569911960131398311 ~2009
98006612391960132247911 ~2009
Home
5.187.277 digits
e-mail
25-11-17