Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
79547143316363771464911 ~2010
79550493374773029602311 ~2010
79556177391591123547911 ~2008
79560610796364848863311 ~2010
79564461677956446167111 ~2010
79566541191591330823911 ~2008
79569542511591390850311 ~2008
79572926991591458539911 ~2008
79573066311591461326311 ~2008
79574735391591494707911 ~2008
795751096130238541651912 ~2011
79575457791591509155911 ~2008
79583586591591671731911 ~2008
79584547614775072856711 ~2010
79586957991591739159911 ~2008
79590024596367201967311 ~2010
79592070231591841404711 ~2008
79593056031591861120711 ~2008
795934944123878048323112 ~2011
79594413591591888271911 ~2008
79595176791591903535911 ~2008
795983352714327700348712 ~2011
79598571797959857179111 ~2010
79599363591591987271911 ~2008
79599555614775973336711 ~2010
Exponent Prime Factor Dig. Year
79599783711591995674311 ~2008
79600454174776027250311 ~2010
79602086991592041739911 ~2008
79603744814776224688711 ~2010
79604542734776272563911 ~2010
79605904191592118083911 ~2008
79606531431592130628711 ~2008
79609476231592189524711 ~2008
79611906231592238124711 ~2008
79613745176369099613711 ~2010
79616261991592325239911 ~2008
79616863191592337263911 ~2008
79620003231592400064711 ~2008
79626094431592521888711 ~2008
79627106631592542132711 ~2008
79633784334778027059911 ~2010
79638428631592768572711 ~2008
79642804311592856086311 ~2008
79647000591592940011911 ~2008
79649893976371991517711 ~2010
79650481496372038519311 ~2010
79652116191593042323911 ~2008
79652618237965261823111 ~2010
79653770534779226231911 ~2010
79656263031593125260711 ~2008
Exponent Prime Factor Dig. Year
79656301311593126026311 ~2008
79656710991593134219911 ~2008
79659395334779563719911 ~2010
79660327191593206543911 ~2008
79663977111593279542311 ~2008
79671462077967146207111 ~2010
79679542431593590848711 ~2008
79680730334780843819911 ~2010
796845864727092759399912 ~2011
79685399631593707992711 ~2008
79685559711593711194311 ~2008
79694390631593887812711 ~2008
79696741431593934828711 ~2008
79697739231593954784711 ~2008
79698699831593973996711 ~2008
79699968711593999374311 ~2008
79711599296376927943311 ~2010
797117596719130822320912 ~2011
797134610930291115214312 ~2011
79717107231594342144711 ~2008
79717811774783068706311 ~2010
79718744991594374899911 ~2008
79719814997971981499111 ~2010
79725407391594508147911 ~2008
797254976911161569676712 ~2010
Exponent Prime Factor Dig. Year
79727303511594546070311 ~2008
79728153416378252272911 ~2010
79730840396378467231311 ~2010
797309803133487011730312 ~2012
79737848574784270914311 ~2010
797419659112758714545712 ~2011
79743539511594870790311 ~2008
79747852976379828237711 ~2010
79750755831595015116711 ~2008
79750876911595017538311 ~2008
79753664631595073292711 ~2008
79754891631595097832711 ~2008
79759856031595197120711 ~2008
79760630991595212619911 ~2008
79766243391595324867911 ~2008
79771420911595428418311 ~2008
79772370414786342224711 ~2010
79774561196381964895311 ~2010
79774760991595495219911 ~2008
79774993014786499580711 ~2010
79775341974786520518311 ~2010
797775046720742151214312 ~2011
79778956311595579126311 ~2008
79783297311595665946311 ~2008
79784295591595685911911 ~2008
Home
5.187.277 digits
e-mail
25-11-17