Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
184276589993685531799911 ~2011
1842775583325798858166312 ~2013
184279934393685598687911 ~2011
184288161233685763224711 ~2011
184301873513686037470311 ~2011
1843114357311058686143912 ~2012
1843164303773726572148112 ~2014
1843177969918431779699112 ~2013
184323171593686463431911 ~2011
1843262410318432624103112 ~2013
1843276115914746208927312 ~2013
184344030233686880604711 ~2011
184344529313686890586311 ~2011
184347281393686945627911 ~2011
184354944713687098894311 ~2011
1843742993914749943951312 ~2013
1843830544114750644352912 ~2013
1843860021118438600211112 ~2013
184390757513687815150311 ~2011
1844015546347944404203912 ~2014
1844032351114752258808912 ~2013
184409714633688194292711 ~2011
184426223393688524467911 ~2011
184439286233688785724711 ~2011
1844513085711067078514312 ~2012
Exponent Prime Factor Dig. Year
1844604799311067628795912 ~2012
184466935793689338715911 ~2011
184486375913689727518311 ~2011
1844867689962725501456712 ~2014
1844868733114758949864912 ~2013
184491454433689829088711 ~2011
184495326113689906522311 ~2011
184499787593689995751911 ~2011
184501893113690037862311 ~2011
1845096450718450964507112 ~2013
184511373113690227462311 ~2011
1845201395977498458627912 ~2014
184520731313690414626311 ~2011
184522508633690450172711 ~2011
184522823513690456470311 ~2011
184527242993690544859911 ~2011
184536599633690731992711 ~2011
184539689993690793799911 ~2011
1845460341118454603411112 ~2013
1845528196318455281963112 ~2013
184557305393691146107911 ~2011
1845638640111073831840712 ~2012
184565102033691302040711 ~2011
184567285193691345703911 ~2011
1845795829714766366637712 ~2013
Exponent Prime Factor Dig. Year
184586340113691726802311 ~2011
184586790593691735811911 ~2011
184590241193691804823911 ~2011
184592232833691844656711 ~2011
184594718513691894370311 ~2011
1845963736955378912107112 ~2014
184617982793692359655911 ~2011
184654797713693095954311 ~2011
1846706256111080237536712 ~2012
184674542513693490850311 ~2011
184680704033693614080711 ~2011
184681197833693623956711 ~2011
184697692913693953858311 ~2011
184711299593694225991911 ~2011
184712961833694259236711 ~2011
1847145394111082872364712 ~2012
184730889233694617784711 ~2011
1847417611344338022671312 ~2014
184752212033695044240711 ~2011
184752590513695051810311 ~2011
184760429513695208590311 ~2011
184775798633695515972711 ~2011
184777807193695556143911 ~2011
1847804255311086825531912 ~2012
1847870991711087225950312 ~2012
Exponent Prime Factor Dig. Year
184798285193695965703911 ~2011
1847986463311087918779912 ~2012
184800046193696000923911 ~2011
184801766513696035330311 ~2011
1848134712111088808272712 ~2012
184818832793696376655911 ~2011
1848220386729571526187312 ~2013
1848351029311090106175912 ~2012
1848421772925877904820712 ~2013
184845733793696914675911 ~2011
184853697233697073944711 ~2011
1848555063729576881019312 ~2013
184868333633697366672711 ~2011
184868569193697371383911 ~2011
184868631233697372624711 ~2011
1848691701118486917011112 ~2013
184871459033697429180711 ~2011
1848803419714790427357712 ~2013
184893149993697862999911 ~2011
1848937404111093624424712 ~2012
1848939763714791518109712 ~2013
184896079433697921588711 ~2011
184898452193697969043911 ~2011
184918867793698377355911 ~2011
184922615033698452300711 ~2011
Home
4.768.925 digits
e-mail
25-05-04