Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
226521634914530432698311 ~2012
2265229538918121836311312 ~2013
226523098914530461978311 ~2012
226523590434530471808711 ~2012
226526817834530536356711 ~2012
226541166594530823331911 ~2012
2265542893718124343149712 ~2013
226573999914531479998311 ~2012
2265807654136252922465712 ~2014
2265844724967975341747112 ~2015
226584906714531698134311 ~2012
226596595314531931906311 ~2012
226605323994532106479911 ~2012
2266479874718131838997712 ~2013
2266497977313598987863912 ~2013
226662743034533254860711 ~2012
226662851394533257027911 ~2012
226668443634533368872711 ~2012
2266729468118133835744912 ~2013
226687974234533759484711 ~2012
2267001888736272030219312 ~2014
226704465234534089304711 ~2012
226714164594534283291911 ~2012
226728368994534567379911 ~2012
226744493514534889870311 ~2012
Exponent Prime Factor Dig. Year
2267494590722674945907112 ~2014
226774289514535485790311 ~2012
2267770233713606621402312 ~2013
226779908514535598170311 ~2012
2267871506918142972055312 ~2013
226796783634535935672711 ~2012
2267990021313607940127912 ~2013
226820275194536405503911 ~2012
2268291733313609750399912 ~2013
226829574714536591494311 ~2012
226829972034536599440711 ~2012
226852044714537040894311 ~2012
2268522451713611134710312 ~2013
2268537772113611226632712 ~2013
226885521234537710424711 ~2012
226886289234537725784711 ~2012
226890325194537806503911 ~2012
2268941111918151528895312 ~2013
226906459314538129186311 ~2012
226915527834538310556711 ~2012
226924835634538496712711 ~2012
226931717514538634350311 ~2012
2269386532118155092256912 ~2013
226939612434538792248711 ~2012
2269510771118156086168912 ~2013
Exponent Prime Factor Dig. Year
226956655434539133108711 ~2012
226963496034539269920711 ~2012
226974428514539488570311 ~2012
2269960998113619765988712 ~2013
227013390714540267814311 ~2012
227019968994540399379911 ~2012
227021468994540429379911 ~2012
2270402167313622413003912 ~2013
227043719514540874390311 ~2012
227044782714540895654311 ~2012
2270576722118164613776912 ~2013
227058421194541168423911 ~2012
2270596729922705967299112 ~2014
227073227514541464550311 ~2012
227077728594541554571911 ~2012
227079203514541584070311 ~2012
2270809915922708099159112 ~2014
227083980594541679611911 ~2012
227084123994541682479911 ~2012
227098997994541979959911 ~2012
227102616114542052322311 ~2012
227127804114542556082311 ~2012
227128904634542578092711 ~2012
2271303931713627823590312 ~2013
2271456883118171655064912 ~2013
Exponent Prime Factor Dig. Year
227155042194543100843911 ~2012
2271646936718173175493712 ~2013
227171403114543428062311 ~2012
2271808183313630849099912 ~2013
227186954514543739090311 ~2012
227197728114543954562311 ~2012
227213885514544277710311 ~2012
2272217293713633303762312 ~2013
227226705714544534114311 ~2012
227226913194544538263911 ~2012
227233091514544661830311 ~2012
227247081594544941631911 ~2012
227253911034545078220711 ~2012
2272580103713635480622312 ~2013
227269312314545386246311 ~2012
227282093514545641870311 ~2012
2272944714113637668284712 ~2013
2273151978754555647488912 ~2015
2273254345313639526071912 ~2013
227347821834546956436711 ~2012
227361622794547232455911 ~2012
2273643924113641863544712 ~2013
227374318194547486363911 ~2012
227388614994547772299911 ~2012
227389587714547791754311 ~2012
Home
4.768.925 digits
e-mail
25-05-04