Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1771756243114174049944912 ~2013
177176983433543539668711 ~2011
177177389393543547787911 ~2011
1771793224114174345792912 ~2013
177182300393543646007911 ~2011
177188033393543760667911 ~2011
177197563313543951266311 ~2011
1771977490714175819925712 ~2013
177215243513544304870311 ~2011
1772153885310632923311912 ~2012
1772174311310633045867912 ~2012
177224059313544481186311 ~2011
177228866633544577332711 ~2011
1772319698914178557591312 ~2013
177247633193544952663911 ~2011
177256551593545131031911 ~2011
177260151593545203031911 ~2011
1772714005114181712040912 ~2013
177272762393545455247911 ~2011
177291935513545838710311 ~2011
177293382833545867656711 ~2011
177305347193546106943911 ~2011
177305533313546110666311 ~2011
1773156900128370510401712 ~2013
177316645913546332918311 ~2011
Exponent Prime Factor Dig. Year
177320020913546400418311 ~2011
1773240121310639440727912 ~2012
1773270691714186165533712 ~2013
177327515513546550310311 ~2011
177337562033546751240711 ~2011
177353163233547063264711 ~2011
177358214033547164280711 ~2011
177369290513547385810311 ~2011
177372543233547450864711 ~2011
177374172833547483456711 ~2011
177374568233547491364711 ~2011
177377561393547551227911 ~2011
177387201833547744036711 ~2011
177388239113547764782311 ~2011
1773922326742574135840912 ~2014
177401134313548022686311 ~2011
177409154993548183099911 ~2011
1774208621310645251727912 ~2012
177421956713548439134311 ~2011
177422080313548441606311 ~2011
177422205113548444102311 ~2011
1774389547310646337283912 ~2012
177447412913548948258311 ~2011
177447715433548954308711 ~2011
177447875513548957510311 ~2011
Exponent Prime Factor Dig. Year
177453812993549076259911 ~2011
1774539215353236176459112 ~2014
1774582693710647496162312 ~2012
177459298913549185978311 ~2011
177465594233549311884711 ~2011
177471148313549422966311 ~2011
1774728864110648373184712 ~2012
177480341033549606820711 ~2011
177482746193549654923911 ~2011
1774829232110648975392712 ~2012
1774877506942597060165712 ~2014
177491255393549825107911 ~2011
177494062193549881243911 ~2011
177500250113550005002311 ~2011
177520449113550408982311 ~2011
177547936433550958728711 ~2011
1775506913356816221225712 ~2014
177551966393551039327911 ~2011
177555342593551106851911 ~2011
177556001513551120030311 ~2011
177569693393551393867911 ~2011
177577458233551549164711 ~2011
177577463393551549267911 ~2011
1775811580110654869480712 ~2012
1775856482953275694487112 ~2014
Exponent Prime Factor Dig. Year
1775861419710655168518312 ~2012
177602399993552047999911 ~2011
177621002033552420040711 ~2011
177630266633552605332711 ~2011
1776338491131974092839912 ~2013
177637881833552757636711 ~2011
177640199633552803992711 ~2011
177642232277237...42679914 2025
177644273993552885479911 ~2011
177645967193552919343911 ~2011
177658128593553162571911 ~2011
1776600283310659601699912 ~2012
177663848993553276979911 ~2011
1776643041728426288667312 ~2013
177668605913553372118311 ~2011
1776962605328431401684912 ~2013
177698891033553977820711 ~2011
177702014513554040290311 ~2011
177708795833554175916711 ~2011
1777126495714217011965712 ~2013
177713057033554261140711 ~2011
1777282662717772826627112 ~2013
177739847993554796959911 ~2011
1777459452110664756712712 ~2012
177758997593555179951911 ~2011
Home
4.768.925 digits
e-mail
25-05-04