Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1836014359711016086158312 ~2012
183601845233672036904711 ~2011
183608091713672161834311 ~2011
1836122688744066944528912 ~2014
183617508713672350174311 ~2011
183625796633672515932711 ~2011
183630793313672615866311 ~2011
183631123313672622466311 ~2011
1836364287711018185726312 ~2012
183637439393672748787911 ~2011
183637994513672759890311 ~2011
183638105393672762107911 ~2011
183638703833672774076711 ~2011
183641827193672836543911 ~2011
183647291993672945839911 ~2011
183655054193673101083911 ~2011
1836582235311019493411912 ~2012
1836583033340404826732712 ~2014
1836598433311019590599912 ~2012
1836645630111019873780712 ~2012
183666243593673324871911 ~2011
183668692313673373846311 ~2011
183677814233673556284711 ~2011
183682456913673649138311 ~2011
183685871033673717420711 ~2011
Exponent Prime Factor Dig. Year
183688681793673773635911 ~2011
183702511433674050228711 ~2011
183706881833674137636711 ~2011
1837365257311024191543912 ~2012
183739025513674780510311 ~2011
183747992033674959840711 ~2011
1837491677311024950063912 ~2012
183752461433675049228711 ~2011
183765874313675317486311 ~2011
1837794628111026767768712 ~2012
1837840894714702727157712 ~2013
183784303313675686066311 ~2011
183789165113675783302311 ~2011
183796302713675926054311 ~2011
183797221913675944438311 ~2011
1837999983118379999831112 ~2013
1838183640111029101840712 ~2012
1838192619744116622872912 ~2014
183819711713676394234311 ~2011
1838273992373530959692112 ~2014
1838316385329413062164912 ~2013
183836513393676730267911 ~2011
1838461819114707694552912 ~2013
1838516270914708130167312 ~2013
183852450833677049016711 ~2011
Exponent Prime Factor Dig. Year
183867707393677354147911 ~2011
183872262233677445244711 ~2011
1838726404714709811237712 ~2013
1838778843711032673062312 ~2012
183897856793677957135911 ~2011
183901945193678038903911 ~2011
1839271722111035630332712 ~2012
1839343540714714748325712 ~2013
183954479513679089590311 ~2011
1839640312169906331859912 ~2014
1839683685118396836851112 ~2013
183972932033679458640711 ~2011
183987639833679752796711 ~2011
1839890734111039344404712 ~2012
183996686033679933720711 ~2011
1840038839914720310719312 ~2013
184003929713680078594311 ~2011
184004358713680087174311 ~2011
184017401633680348032711 ~2011
184033012913680660258311 ~2011
184038061313680761226311 ~2011
184046026313680920526311 ~2011
184059973913681199478311 ~2011
184071155393681423107911 ~2011
184083234713681664694311 ~2011
Exponent Prime Factor Dig. Year
1840833091114726664728912 ~2013
1840936333344182471999312 ~2014
184101441713682028834311 ~2011
1841271652318412716523112 ~2013
1841291921933143254594312 ~2014
184134178313682683566311 ~2011
184142363633682847272711 ~2011
184155347993683106959911 ~2011
1841736511918417365119112 ~2013
184173669833683473396711 ~2011
184179683633683593672711 ~2011
1841877203914735017631312 ~2013
184188221393683764427911 ~2011
184206796193684135923911 ~2011
184215687233684313744711 ~2011
184225632593684512651911 ~2011
1842309631714738477053712 ~2013
1842347266344216334391312 ~2014
184234847633684696952711 ~2011
184247111993684942239911 ~2011
184247762033684955240711 ~2011
184250551913685011038311 ~2011
1842516698377385701328712 ~2014
184259054993685181099911 ~2011
184264613633685292272711 ~2011
Home
4.768.925 digits
e-mail
25-05-04