Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
170795550713415911014311 ~2011
1708062881310248377287912 ~2012
1708064160110248384960712 ~2012
170811492233416229844711 ~2011
170821772393416435447911 ~2011
1708244529751247335891112 ~2014
170836131593416722631911 ~2011
170844424433416888488711 ~2011
170844879233416897584711 ~2011
1708512777117085127771112 ~2013
1708569613710251417682312 ~2012
170867151833417343036711 ~2011
170870006993417400139911 ~2011
1708820011713670560093712 ~2012
170905757393418115147911 ~2011
170907081713418141634311 ~2011
1709126602110254759612712 ~2012
1709193736713673549893712 ~2012
170919654833418393096711 ~2011
170920050833418401016711 ~2011
170923011233418460224711 ~2011
1709260630113674085040912 ~2012
1709366150913674929207312 ~2012
170943964433418879288711 ~2011
1709444533710256667202312 ~2012
Exponent Prime Factor Dig. Year
170962513913419250278311 ~2011
1709753114954712099676912 ~2014
170978967713419579354311 ~2011
170982275633419645512711 ~2011
170986273913419725478311 ~2011
170992096433419841928711 ~2011
1709971811310259830867912 ~2012
1709972006923939608096712 ~2013
1710087113310260522679912 ~2012
171014008313420280166311 ~2011
1710155551713681244413712 ~2012
1710308479917103084799112 ~2013
1710325434110261952604712 ~2012
1710387321127366197137712 ~2013
171042104271836...99859914 2024
171045186593420903731911 ~2011
171045361913420907238311 ~2011
171045813113420916262311 ~2011
171048732113420974642311 ~2011
171050097833421001956711 ~2011
1710567214110263403284712 ~2012
1710585960127369375361712 ~2013
171063614513421272290311 ~2011
171069226433421384528711 ~2011
171073864313421477286311 ~2011
Exponent Prime Factor Dig. Year
171078069593421561391911 ~2011
171078345113421566902311 ~2011
1710834787713686678301712 ~2012
1710848620937638669659912 ~2013
171095211833421904236711 ~2011
171104253833422085076711 ~2011
171105119033422102380711 ~2011
171110426033422208520711 ~2011
171118022033422360440711 ~2011
1711200082327379201316912 ~2013
171126388913422527778311 ~2011
171139188833422783776711 ~2011
171139331633422786632711 ~2011
171153071513423061430311 ~2011
171158484233423169684711 ~2011
171170443313423408866311 ~2011
171170542433423410848711 ~2011
1711890866913695126935312 ~2012
171204909833424098196711 ~2011
171209425193424188503911 ~2011
1712158474937667486447912 ~2013
171216036713424320734311 ~2011
171216347033424326940711 ~2011
1712296962110273781772712 ~2012
1712308246327396931940912 ~2013
Exponent Prime Factor Dig. Year
171249093833424981876711 ~2011
1712521940913700175527312 ~2012
171256536593425130731911 ~2011
171269610113425392202311 ~2011
1712745718110276474308712 ~2012
1712771112110276626672712 ~2012
171282440993425648819911 ~2011
171287340113425746802311 ~2011
171309247193426184943911 ~2011
1713282040317132820403112 ~2013
171333286433426665728711 ~2011
171335852393426717047911 ~2011
171342935633426858712711 ~2011
171371081513427421630311 ~2011
171372357113427447142311 ~2011
1713765268341130366439312 ~2014
171379726193427594523911 ~2011
171386903513427738070311 ~2011
171391684193427833683911 ~2011
1713992631117139926311112 ~2013
171401237393428024747911 ~2011
171402279833428045596711 ~2011
171414154913428283098311 ~2011
171424253513428485070311 ~2011
1714268815310285612891912 ~2012
Home
4.768.925 digits
e-mail
25-05-04