Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
145175278792903505575911 ~2010
145176987592903539751911 ~2010
145182617778710957066311 ~2012
145184487538711069251911 ~2012
145185534592903710691911 ~2010
1451990946131943800814312 ~2013
145200407512904008150311 ~2010
145201316032904026320711 ~2010
145207258372434...38314315 2025
145209250192904185003911 ~2010
1452117983911616943871312 ~2012
145212700192904254003911 ~2010
145213192312904263846311 ~2010
1452202370911617618967312 ~2012
145221379978713282798311 ~2012
145225989112904519782311 ~2010
145233150712904663014311 ~2010
145233570832904671416711 ~2010
145238590792904771815911 ~2010
145242903112904858062311 ~2010
145253669032905073380711 ~2010
145259566312905191326311 ~2010
1452595774111620766192912 ~2012
145269305032905386100711 ~2010
1452736975720338317659912 ~2012
Exponent Prime Factor Dig. Year
145290298432905805968711 ~2010
1452941836934870604085712 ~2013
145299682792905993655911 ~2010
145314976912906299538311 ~2010
145319411632906388232711 ~2010
145323736312906474726311 ~2010
145323975592906479511911 ~2010
145332318378719939102311 ~2012
145340346112906806922311 ~2010
145345187632906903752711 ~2010
145359375738721562543911 ~2012
1453671268143610138043112 ~2013
145374608538722476511911 ~2012
1453800745961059631327912 ~2014
145380463578722827814311 ~2012
145380497032907609940711 ~2010
145382890792907657815911 ~2010
145384596712907691934311 ~2010
1453847132911630777063312 ~2012
145395642712907912854311 ~2010
145400142978724008578311 ~2012
145401815992908036319911 ~2010
145402913032908058260711 ~2010
145409883232908197664711 ~2010
145423516192908470323911 ~2010
Exponent Prime Factor Dig. Year
145426646632908532932711 ~2010
1454428578714544285787112 ~2012
145449425392908988507911 ~2010
145453977712909079554311 ~2010
145456911832909138236711 ~2010
1454599427934910386269712 ~2013
145461564592909231291911 ~2010
145465943392909318867911 ~2010
145470228112909404562311 ~2010
145483032712909660654311 ~2010
1454833593114548335931112 ~2012
145489711912909794238311 ~2010
145493782792909875655911 ~2010
1454959289911639674319312 ~2012
145505472232910109444711 ~2010
145519307032910386140711 ~2010
1455200584111641604672912 ~2012
145520301232910406024711 ~2010
1455301747323284827956912 ~2013
145532512312910650246311 ~2010
145532960392910659207911 ~2010
1455343515114553435151112 ~2012
145540368592910807371911 ~2010
145547131192910942623911 ~2010
145547700112910954002311 ~2010
Exponent Prime Factor Dig. Year
145549315192910986303911 ~2010
145550966032911019320711 ~2010
145551151432911023028711 ~2010
145551590513624...03699114 2024
145551795112911035902311 ~2010
1455520906111644167248912 ~2012
145556158432911123168711 ~2010
145560625192911212503911 ~2010
1455671366911645370935312 ~2012
145571200312911424006311 ~2010
145572660138734359607911 ~2012
145573268512911465370311 ~2010
145580026312911600526311 ~2010
145588776592911775531911 ~2010
145590326392911806527911 ~2010
1455903628143677108843112 ~2013
145591938712911838774311 ~2010
145593232312911864646311 ~2010
145597802992911956059911 ~2010
145602513112912050262311 ~2010
145605264112912105282311 ~2010
145610979232912219584711 ~2010
1456211595114562115951112 ~2012
145623671032912473420711 ~2010
145624428832912488576711 ~2010
Home
4.724.182 digits
e-mail
25-04-13