Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
40430994293234479543311 ~2008
4043536943808707388710 ~2006
40438908132426334487911 ~2007
4043982419808796483910 ~2006
4044371759808874351910 ~2006
40444967172426698030311 ~2007
4044502151808900430310 ~2006
40445771114044577111111 ~2008
4044588419808917683910 ~2006
4044847679808969535910 ~2006
40449833572426990014311 ~2007
4045250243809050048710 ~2006
4045484843809096968710 ~2006
4045511231809102246310 ~2006
4045959479809191895910 ~2006
4046022719809204543910 ~2006
4046103203809220640710 ~2006
4046123531809224706310 ~2006
4046143163809228632710 ~2006
4046153339809230667910 ~2006
40461572776473851643311 ~2008
40466138813237291104911 ~2008
40467430313237394424911 ~2008
40470116993237609359311 ~2008
4047097391809419478310 ~2006
Exponent Prime Factor Digits Year
4047115031809423006310 ~2006
40472217293237777383311 ~2008
4047224591809444918310 ~2006
4047373079809474615910 ~2006
40474147812428448868711 ~2007
4047482531809496506310 ~2006
40477824473238225957711 ~2008
4047786959809557391910 ~2006
4047829223809565844710 ~2006
4048078451809615690310 ~2006
40482054773238564381711 ~2008
40482373218906122106311 ~2009
4048328519809665703910 ~2006
4048551911809710382310 ~2006
40490315416478450465711 ~2008
4049073419809814683910 ~2006
40492300372429538022311 ~2007
4049240771809848154310 ~2006
4049319143809863828710 ~2006
40495929293239674343311 ~2008
404980754973706497391912 ~2011
40498094999719542797711 ~2009
4049890079809978015910 ~2006
4049935199809987039910 ~2006
4050151019810030203910 ~2006
Exponent Prime Factor Digits Year
4050176051810035210310 ~2006
4050302843810060568710 ~2006
40504838412430290304711 ~2007
4050546719810109343910 ~2006
4050626603810125320710 ~2006
40506330914050633091111 ~2008
4050830579810166115910 ~2006
4050956111810191222310 ~2006
40510079717291814347911 ~2008
40512119594051211959111 ~2008
40514089932430845395911 ~2007
40515754572430945274311 ~2007
4051799819810359963910 ~2006
40521348314052134831111 ~2008
4052165879810433175910 ~2006
40521994439725278663311 ~2009
40522851372431371082311 ~2007
40523280173241862413711 ~2008
40526443572431586614311 ~2007
40526998913242159912911 ~2008
4053091739810618347910 ~2006
4053116663810623332710 ~2006
4053152123810630424710 ~2006
4053257531810651506310 ~2006
4053303011810660602310 ~2006
Exponent Prime Factor Digits Year
4053386723810677344710 ~2006
4053458159810691631910 ~2006
4053669563810733912710 ~2006
4053687623810737524710 ~2006
4053835319810767063910 ~2006
4053914003810782800710 ~2006
405414978719459918977712 ~2009
4054240259810848051910 ~2006
4054434539810886907910 ~2006
4054645319810929063910 ~2006
4054734191810946838310 ~2006
4055258579811051715910 ~2006
4055511263811102252710 ~2006
40555250693244420055311 ~2008
4055554631811110926310 ~2006
40558026074055802607111 ~2008
4056205739811241147910 ~2006
4056211871811242374310 ~2006
4056271319811254263910 ~2006
4056491759811298351910 ~2006
40573184932434391095911 ~2007
4057470251811494050310 ~2006
40575591732434535503911 ~2007
4057660511811532102310 ~2006
4057704971811540994310 ~2006
Home
5.187.277 digits
e-mail
25-11-17