Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
129702878992594057579911 ~2010
129710720392594214407911 ~2010
129712813912594256278311 ~2010
129724026232594480524711 ~2010
129724646392594492927911 ~2010
129729202217783752132711 ~2011
129730257592594605151911 ~2010
129731929312594638586311 ~2010
129735238337784114299911 ~2011
129751017592595020351911 ~2010
1297559145112975591451112 ~2012
129764411512595288230311 ~2010
129771252112595425042311 ~2010
1297714601962290300891312 ~2013
129773095312595461906311 ~2010
1297742697720763883163312 ~2012
129778431112595568622311 ~2010
129793702792595874055911 ~2010
129796289992595925799911 ~2010
129801068032596021360711 ~2010
129805959832596119196711 ~2010
129806910417788414624711 ~2011
129813415312596268306311 ~2010
129827229832596544596711 ~2010
129843478912596869578311 ~2010
Exponent Prime Factor Dig. Year
129850081312597001626311 ~2010
129851544112597030882311 ~2010
129867887512597357750311 ~2010
129871153312597423066311 ~2010
129883595512597671910311 ~2010
129884408512597688170311 ~2010
129887478832597749576711 ~2010
129895934512597918690311 ~2010
1298978782344165278598312 ~2013
129906745312598134906311 ~2010
129908107137794486427911 ~2011
129912457192598249143911 ~2010
129913136032598262720711 ~2010
1299194608710393556869712 ~2011
129919896017795193760711 ~2011
129922639937795358395911 ~2011
129928333912598566678311 ~2010
129929435032598588700711 ~2010
1299313450710394507605712 ~2011
129934786977796087218311 ~2011
1299445513912994455139112 ~2012
129945632032598912640711 ~2010
129950316832599006336711 ~2010
129957905512599158110311 ~2010
129958246432599164928711 ~2010
Exponent Prime Factor Dig. Year
129960360832599207216711 ~2010
129976710832599534216711 ~2010
1299850732320797611716912 ~2012
129986681577799200894311 ~2011
129988047712599760954311 ~2010
129999440632599988812711 ~2010
130002191032600043820711 ~2010
130006822312600136446311 ~2010
130010569792600211395911 ~2010
130014300832600286016711 ~2010
130014309712600286194311 ~2010
130035225832600704516711 ~2010
130042420817802545248711 ~2011
130044169792600883395911 ~2010
130049365137802961907911 ~2011
130054675432601093508711 ~2010
130061922112601238442311 ~2010
130064763832601295276711 ~2010
1300657474352026298972112 ~2013
130066564792601331295911 ~2010
1300713510713007135107112 ~2012
130071911392601438227911 ~2010
130073275792601465515911 ~2010
1300776143923413970590312 ~2012
1300846756710406774053712 ~2011
Exponent Prime Factor Dig. Year
130086234712601724694311 ~2010
130091182312601823646311 ~2010
130094370617805662236711 ~2011
130098945592601978911911 ~2010
1301015863110408126904912 ~2011
130103384032602067680711 ~2010
130109472592602189451911 ~2010
130109779432602195588711 ~2010
130110522832602210456711 ~2010
130113041577806782494311 ~2011
130128184377807691062311 ~2011
130131390592602627811911 ~2010
1301395454910411163639312 ~2011
130141230712602824614311 ~2010
130148785312602975706311 ~2010
1301529566970282596612712 ~2014
130155225017809313500711 ~2011
1301564990910412519927312 ~2011
130161589792603231795911 ~2010
130165157032603303140711 ~2010
130173110632603462212711 ~2010
130181829232603636584711 ~2010
130187010377811220622311 ~2011
1301924258931246182213712 ~2013
130202430777812145846311 ~2011
Home
4.724.182 digits
e-mail
25-04-13