Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
92403324111848066482311 ~2009
92406455031848129100711 ~2009
92422510431848450208711 ~2009
92423322079242332207111 ~2011
92428354017394268320911 ~2010
92436054111848721082311 ~2009
92437373391848747467911 ~2009
92438330575546299834311 ~2010
92439842031848796840711 ~2009
92442071391848841427911 ~2009
92443833591848876671911 ~2009
92444083911848881678311 ~2009
924474792142525840436712 ~2012
92448783231848975664711 ~2009
92449912191848998243911 ~2009
92450697831849013956711 ~2009
92453196231849063924711 ~2009
92454783231849095664711 ~2009
92455905591849118111911 ~2009
92464784631849295692711 ~2009
92469276711849385534311 ~2009
92470421631849408432711 ~2009
92472787917397823032911 ~2010
92481118911849622378311 ~2009
92483171391849663427911 ~2009
Exponent Prime Factor Dig. Year
92487127431849742548711 ~2009
92488960431849779208711 ~2009
92490475191849809503911 ~2009
92498202711849964054311 ~2009
92515418631850308372711 ~2009
92517029631850340592711 ~2009
92519964175551197850311 ~2010
92523363711850467274311 ~2009
92526469791850529395911 ~2009
92533442031850668840711 ~2009
92539283175552356990311 ~2010
92541235791850824715911 ~2009
925447523322210740559312 ~2011
92545845231850916904711 ~2009
92547745191850954903911 ~2009
92548344897403867591311 ~2010
92548711377403896909711 ~2010
92550158511851003170311 ~2009
92551099911851021998311 ~2009
92554415991851088319911 ~2009
92558418535553505111911 ~2010
92563641711851272834311 ~2009
92565818391851316367911 ~2009
92566013631851320272711 ~2009
92569518591851390371911 ~2009
Exponent Prime Factor Dig. Year
92570039631851400792711 ~2009
92574736015554484160711 ~2010
92575101775554506106311 ~2010
92575135431851502708711 ~2009
92575351911851507038311 ~2009
92576415535554584931911 ~2010
92579325135554759507911 ~2010
92580886431851617728711 ~2009
92583262431851665248711 ~2009
92585137791851702755911 ~2009
92589698215555381892711 ~2010
92594206191851884123911 ~2009
925944188322222660519312 ~2011
92595476575555728594311 ~2010
92599659711851993194311 ~2009
92602193991852043879911 ~2009
92605990791852119815911 ~2009
92608540815556512448711 ~2010
92609176911852183538311 ~2009
92612853591852257071911 ~2009
92613666711852273334311 ~2009
92614464775556867886311 ~2010
92614940097409195207311 ~2010
92617258677409380693711 ~2010
92622069831852441396711 ~2009
Exponent Prime Factor Dig. Year
92623273017409861840911 ~2010
926251937312967527122312 ~2011
92630877831852617556711 ~2009
92633776311852675526311 ~2009
92635102191852702043911 ~2009
92635677111852713542311 ~2009
92636566311852731326311 ~2009
92652671391853053427911 ~2009
92654531991853090639911 ~2009
926599532912972393460712 ~2011
92665060791853301215911 ~2009
92677238631853544772711 ~2009
92677775391853555507911 ~2009
92679736077414378885711 ~2010
92682232311853644646311 ~2009
92684266311853685326311 ~2009
926851308714829620939312 ~2011
92687551879268755187111 ~2011
92689559031853791180711 ~2009
92690725311853814506311 ~2009
92692366311853847326311 ~2009
92695994991853919899911 ~2009
92696840031853936800711 ~2009
92700463191854009263911 ~2009
92702683677416214693711 ~2010
Home
4.768.925 digits
e-mail
25-05-04