Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
101022237736061334263911 ~2010
101023653232020473064711 ~2009
101026065712020521314311 ~2009
101028128992020562579911 ~2009
1010301360710103013607112 ~2011
101031688912020633778311 ~2009
1010353851740414154068112 ~2012
101046553912020931078311 ~2009
101047917712020958354311 ~2009
101053801432021076028711 ~2009
101057337832021146756711 ~2009
101058382432021167648711 ~2009
1010663341724255920200912 ~2012
101071224976064273498311 ~2010
101074032592021480651911 ~2009
101074393792021487875911 ~2009
101074627198085970175311 ~2011
101079835912021596718311 ~2009
101084307232021686144711 ~2009
101085263032021705260711 ~2009
101088205312021764106311 ~2009
101089814816065388888711 ~2010
1010899993910108999939112 ~2011
101090592112021811842311 ~2009
101092123432021842468711 ~2009
Exponent Prime Factor Dig. Year
101092583392021851667911 ~2009
101095346632021906932711 ~2009
101100164392022003287911 ~2009
101102087936066125275911 ~2010
101112357592022247151911 ~2009
1011206454116179303265712 ~2011
101128543432022570868711 ~2009
101143278592022865571911 ~2009
101143855792022877115911 ~2009
101150382592023007651911 ~2009
101150653912023013078311 ~2009
101151023512023020470311 ~2009
101153345632023066912711 ~2009
101153857792023077155911 ~2009
101155381376069322882311 ~2010
101164784512023295690311 ~2009
101164936432023298728711 ~2009
101164991632023299832711 ~2009
101165291536069917491911 ~2010
101178685912023573718311 ~2009
101179904392023598087911 ~2009
101183687512023673750311 ~2009
101184682192023693643911 ~2009
101187811318095024904911 ~2011
1011896679110118966791112 ~2011
Exponent Prime Factor Dig. Year
1011945999110119459991112 ~2011
1012030052342505262196712 ~2012
101204369392024087387911 ~2009
101206381792024127635911 ~2009
101209867192024197343911 ~2009
101210980792024219615911 ~2009
101216898712024337974311 ~2009
101218624976073117498311 ~2010
101228978878098318309711 ~2011
101230254832024605096711 ~2009
101230404136073824247911 ~2010
101238842032024776840711 ~2009
101239324432024786488711 ~2009
101240925418099274032911 ~2011
101244087191249...35924714 2023
101248675792024973515911 ~2009
101249560432024991208711 ~2009
101256391192025127823911 ~2009
101259191032025183820711 ~2009
101260611616075636696711 ~2010
101272852432025457048711 ~2009
101272960792025459215911 ~2009
101274784376076487062311 ~2010
101276299312025525986311 ~2009
101284795192025695903911 ~2009
Exponent Prime Factor Dig. Year
101285600632025712012711 ~2009
101285791192025715823911 ~2009
101291490112025829802311 ~2009
101292066832025841336711 ~2009
101293687192025873743911 ~2009
101294004832025880096711 ~2009
101295625432025912508711 ~2009
101297959198103836735311 ~2011
101302288192026045763911 ~2009
1013024596310130245963112 ~2011
101313339112026266782311 ~2009
101326174192026523483911 ~2009
101327863792026557275911 ~2009
101333763776080025826311 ~2010
101339741392026794827911 ~2009
101340730912026814618311 ~2009
101340992032026819840711 ~2009
101342117392026842347911 ~2009
1013460095314188441334312 ~2011
101351160418108092832911 ~2011
1013515069346621693187912 ~2012
101351722912027034458311 ~2009
101352920032027058400711 ~2009
101353001392027060027911 ~2009
101353460512027069210311 ~2009
Home
4.768.925 digits
e-mail
25-05-04