Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
87596273391751925467911 ~2009
87599633511751992670311 ~2009
87600251877008020149711 ~2010
87601703391752034067911 ~2009
876171303150817935579912 ~2012
87628500591752570011911 ~2009
87632475111752649502311 ~2009
87632931111752658622311 ~2009
87634011831752680236711 ~2009
87637149591752742991911 ~2009
87639695031752793900711 ~2009
87642876831752857536711 ~2009
87643250391752865007911 ~2009
87655410535259324631911 ~2010
87659217711753184354311 ~2009
87660778431753215568711 ~2009
87662282031753245640711 ~2009
87666282591753325651911 ~2009
87676719111753534382311 ~2009
87683958415261037504711 ~2010
87690613191753812263911 ~2009
87693864897015509191311 ~2010
87697770111753955402311 ~2009
87710217297016817383311 ~2010
87712405317016992424911 ~2010
Exponent Prime Factor Dig. Year
87714831111754296622311 ~2009
87717576231754351524711 ~2009
87718961511754379230311 ~2009
87719604477017568357711 ~2010
87720891591754417831911 ~2009
87723091575263385494311 ~2010
877253200128072102403312 ~2012
877301125115791420251912 ~2011
87730844031754616880711 ~2009
87731037231754620744711 ~2009
87731248911754624978311 ~2009
87731895591754637911911 ~2009
87733060431754661208711 ~2009
87733535511754670710311 ~2009
87734883231754697664711 ~2009
87737867415264272044711 ~2010
87749168535264950111911 ~2010
877504608715795082956712 ~2011
87753201711755064034311 ~2009
87754083111755081662311 ~2009
87754383831755087676711 ~2009
87759182415265550944711 ~2010
87763216431755264328711 ~2009
87763630911755272618311 ~2009
87767325711755346514311 ~2009
Exponent Prime Factor Dig. Year
87771399111755427982311 ~2009
87775795791755515915911 ~2009
87780219711755604394311 ~2009
87784015911755680318311 ~2009
87784523631755690472711 ~2009
87786629391755732587911 ~2009
87786945535267216731911 ~2010
87788143497023051479311 ~2010
87792479031755849580711 ~2009
87792705831755854116711 ~2009
87793009791755860195911 ~2009
87793717638779371763111 ~2010
87800975631756019512711 ~2009
878076256142147660292912 ~2012
87808049577024643965711 ~2010
87808710078780871007111 ~2010
87815638077025251045711 ~2010
878162692722832230010312 ~2011
878169595340395801383912 ~2012
878179399712294511595912 ~2011
87825160191756503203911 ~2009
87827303991756546079911 ~2009
878337003114053392049712 ~2011
87838499097027079927311 ~2010
878397356321081536551312 ~2011
Exponent Prime Factor Dig. Year
87840293118784029311111 ~2010
87843292431756865848711 ~2009
87849597231756991944711 ~2009
87852619375271157162311 ~2010
87853814631757076292711 ~2009
87854464791757089295911 ~2009
87859757391757195147911 ~2009
87860566617028845328911 ~2010
87861988191757239763911 ~2009
87862711815271762708711 ~2010
87864858711757297174311 ~2009
87869692911757393858311 ~2009
87869988231757399764711 ~2009
87876415911757528318311 ~2009
87876468417030117472911 ~2010
87877381311757547626311 ~2009
87880904391757618087911 ~2009
87882104935272926295911 ~2010
87882910791757658215911 ~2009
87883036191757660723911 ~2009
87888389215273303352711 ~2010
87890712111757814242311 ~2009
87891379431757827588711 ~2009
878914665114062634641712 ~2011
87893358231757867164711 ~2009
Home
4.768.925 digits
e-mail
25-05-04