Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
96120803991922416079911 ~2009
96121908831922438176711 ~2009
96128171391922563427911 ~2009
96136208391922724167911 ~2009
96143790231922875804711 ~2009
96150213591923004271911 ~2009
96152697111923053942311 ~2009
96154275711923085514311 ~2009
96154728711923094574311 ~2009
96159171231923183424711 ~2009
96162113575769726814311 ~2010
961632966115386127457712 ~2011
96163425831923268516711 ~2009
96169462431923389248711 ~2009
96172200711923444014311 ~2009
96173308191923466163911 ~2009
961761131313464655838312 ~2011
96176586231923531724711 ~2009
96177580431923551608711 ~2009
96181961511923639230311 ~2009
96187227831923744556711 ~2009
96187903191923758063911 ~2009
96189771015771386260711 ~2010
96195934375771756062311 ~2010
96204749391924094987911 ~2009
Exponent Prime Factor Dig. Year
96205208391924104167911 ~2009
96207592431924151848711 ~2009
96211251591924225031911 ~2009
96221619111924432382311 ~2009
96222481431924449628711 ~2009
96244157631924883152711 ~2009
96248913477699913077711 ~2010
96252742311925054846311 ~2009
962552056136576978131912 ~2012
96258163311925163266311 ~2009
96265479375775928762311 ~2010
96266346831925326936711 ~2009
96270924111925418482311 ~2009
96274116177701929293711 ~2010
96276028191925520563911 ~2009
96277885191925557703911 ~2009
962846906323108325751312 ~2012
96288713031925774260711 ~2009
96290612719629061271111 ~2011
96290726991925814539911 ~2009
962919193125035899020712 ~2012
963005383315408086132912 ~2011
96303228177704258253711 ~2010
96304072431926081448711 ~2009
96307361031926147220711 ~2009
Exponent Prime Factor Dig. Year
96313455111926269102311 ~2009
96318756415779125384711 ~2010
96318791391926375827911 ~2009
96319892991926397859911 ~2009
963282402128898472063112 ~2012
96333580791926671615911 ~2009
96348755991926975119911 ~2009
96349772511926995450311 ~2009
96353238111927064762311 ~2009
96355664391927113287911 ~2009
96355727031927114540711 ~2009
96360135799636013579111 ~2011
96360341391927206827911 ~2009
96364836831927296736711 ~2009
96365024391927300487911 ~2009
96366584575781995074311 ~2010
96371515911927430318311 ~2009
96373440717709875256911 ~2010
96377238711927544774311 ~2009
96377540391927550807911 ~2009
96378366231927567324711 ~2009
96383869935783032195911 ~2010
96392833431927856668711 ~2009
96395804511927916090311 ~2009
96398218399639821839111 ~2011
Exponent Prime Factor Dig. Year
96398562679639856267111 ~2011
96400957791928019155911 ~2009
96401130711928022614311 ~2009
96402226431928044528711 ~2009
96404679711928093594311 ~2009
96413753391928275067911 ~2009
96417626391928352527911 ~2009
96419779791928395595911 ~2009
96421646991928432939911 ~2009
96428038317714243064911 ~2010
96428407431928568148711 ~2009
96434998191928699963911 ~2009
96437098191928741963911 ~2009
96437915935786274955911 ~2010
96450096111929001922311 ~2009
96457269775787436186311 ~2010
96457600311929152006311 ~2009
96464770911929295418311 ~2009
96465453231929309064711 ~2009
96474733917717978712911 ~2010
96478008591929560171911 ~2009
964805143713507272011912 ~2011
96488446311929768926311 ~2009
96489343911929786878311 ~2009
964902769117368249843912 ~2011
Home
4.768.925 digits
e-mail
25-05-04