Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
63641048695091283895311 ~2009
63641684031272833680711 ~2008
63642660591272853211911 ~2008
63643279191272865583911 ~2008
63646967631272939352711 ~2008
63649398533818963911911 ~2009
63650035315092002824911 ~2009
63650362311273007246311 ~2008
63650678991273013579911 ~2008
63652082991273041659911 ~2008
63654925191273098503911 ~2008
63664544031273290880711 ~2008
63665894215093271536911 ~2009
63669262431273385248711 ~2008
63669517573820171054311 ~2009
63670784391273415687911 ~2008
63671021391273420427911 ~2008
63672119413820327164711 ~2009
63674285631273485712711 ~2008
63679200591273584011911 ~2008
63684368391273687367911 ~2008
63684955311273699106311 ~2008
63685417191273708343911 ~2008
63686851311273737026311 ~2008
63687237231273744744711 ~2008
Exponent Prime Factor Dig. Year
63687682915095014632911 ~2009
63688407111273768142311 ~2008
63691028716369102871111 ~2009
63693540831273870816711 ~2008
63693876831273877536711 ~2008
63695078031273901560711 ~2008
63695421831273908436711 ~2008
63696532431273930648711 ~2008
63697795431273955908711 ~2008
63698088831273961776711 ~2008
63699109933821946595911 ~2009
63699639231273992784711 ~2008
63702337876370233787111 ~2009
63702747591274054951911 ~2008
63709455831274189116711 ~2008
63715024431274300488711 ~2008
63717739791274354795911 ~2008
637208437715293002504912 ~2010
63722091831274441836711 ~2008
63725417938921558510311 ~2010
63725619595098049567311 ~2009
63726053413823563204711 ~2009
63727756911274555138311 ~2008
63729418911274588378311 ~2008
63729734173823784050311 ~2009
Exponent Prime Factor Dig. Year
63729934431274598688711 ~2008
63733429311274668586311 ~2008
63736084333824165059911 ~2009
63741810133824508607911 ~2009
63741814311274836286311 ~2008
63742940991274858819911 ~2008
63747681175099814493711 ~2009
63752882991275057659911 ~2008
63753918111275078362311 ~2008
63757257711275145154311 ~2008
63759425695100754055311 ~2009
63760272133825616327911 ~2009
63764663575101173085711 ~2009
63767451831275349036711 ~2008
63772009191275440183911 ~2008
63773496591275469931911 ~2008
63777073311275541466311 ~2008
63777342111275546842311 ~2008
63778220631275564412711 ~2008
63779351031275587020711 ~2008
63779497191275589943911 ~2008
63781352991275627059911 ~2008
63784299231275685984711 ~2008
63785311933827118715911 ~2009
63786554875102924389711 ~2009
Exponent Prime Factor Dig. Year
63786850213827211012711 ~2009
63788077311275761546311 ~2008
63788166231275763324711 ~2008
63791742711275834854311 ~2008
63791941311275838826311 ~2008
63791946173827516770311 ~2009
63793101111275862022311 ~2008
63794510031275890200711 ~2008
63795287631275905752711 ~2008
63795669831275913396711 ~2008
63799288431275985768711 ~2008
63799607391275992147911 ~2008
63800349715104027976911 ~2009
63812740075105019205711 ~2009
63812783391276255667911 ~2008
63813232195105058575311 ~2009
63813355311276267106311 ~2008
63813572631276271452711 ~2008
63819139876381913987111 ~2009
638207664721699060599912 ~2011
63823798311276475966311 ~2008
63824602191276492043911 ~2008
63824680613829480836711 ~2009
63825487191276509743911 ~2008
638320142347235690530312 ~2011
Home
4.888.230 digits
e-mail
25-06-29