Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
877253200128072102403312 ~2012
877301125115791420251912 ~2011
87730844031754616880711 ~2009
87731037231754620744711 ~2009
87731248911754624978311 ~2009
87731895591754637911911 ~2009
87733535511754670710311 ~2009
87734883231754697664711 ~2009
87737867415264272044711 ~2010
87749168535264950111911 ~2010
877504608715795082956712 ~2011
87753201711755064034311 ~2009
87754083111755081662311 ~2009
87754383831755087676711 ~2009
87759182415265550944711 ~2010
87763216431755264328711 ~2009
87763630911755272618311 ~2009
87767325711755346514311 ~2009
87771399111755427982311 ~2009
87775795791755515915911 ~2009
87780219711755604394311 ~2009
87784015911755680318311 ~2009
87784523631755690472711 ~2009
87786629391755732587911 ~2009
87786945535267216731911 ~2010
Exponent Prime Factor Dig. Year
87788143497023051479311 ~2010
87792479031755849580711 ~2009
87792705831755854116711 ~2009
87793009791755860195911 ~2009
87793717638779371763111 ~2010
87800975631756019512711 ~2009
878076256142147660292912 ~2012
87808049577024643965711 ~2010
87808710078780871007111 ~2010
87815638077025251045711 ~2010
878162692722832230010312 ~2011
878169595340395801383912 ~2012
878179399712294511595912 ~2011
87825160191756503203911 ~2009
87827303991756546079911 ~2009
878337003114053392049712 ~2011
87838499097027079927311 ~2010
878397356321081536551312 ~2011
87840293118784029311111 ~2010
87843292431756865848711 ~2009
87849597231756991944711 ~2009
87852619375271157162311 ~2010
87853814631757076292711 ~2009
87854464791757089295911 ~2009
87859757391757195147911 ~2009
Exponent Prime Factor Dig. Year
87860566617028845328911 ~2010
87861988191757239763911 ~2009
87862711815271762708711 ~2010
87864858711757297174311 ~2009
87869692911757393858311 ~2009
87869988231757399764711 ~2009
87876415911757528318311 ~2009
87876468417030117472911 ~2010
87877381311757547626311 ~2009
87880904391757618087911 ~2009
87882104935272926295911 ~2010
87882910791757658215911 ~2009
87883036191757660723911 ~2009
87888389215273303352711 ~2010
87890712111757814242311 ~2009
87891379431757827588711 ~2009
878914665114062634641712 ~2011
87893358231757867164711 ~2009
87894586977031566957711 ~2010
87898262991757965259911 ~2009
87898684497031894759311 ~2010
879030624715822551244712 ~2011
879052539136920206642312 ~2012
87907077711758141554311 ~2009
87908617311758172346311 ~2009
Exponent Prime Factor Dig. Year
87912111831758242236711 ~2009
879129072119340839586312 ~2011
87913058511758261170311 ~2009
87918421311758368426311 ~2009
87921479391758429587911 ~2009
87925258311758505166311 ~2009
879263923712309694931912 ~2011
87929869015275792140711 ~2010
87934027677034722213711 ~2010
87934055031758681100711 ~2009
87935242791758704855911 ~2009
87936843735276210623911 ~2010
87942772911758855458311 ~2009
87943304631758866092711 ~2009
87943799991758875999911 ~2009
87950246217036019696911 ~2010
87950875191759017503911 ~2009
87951616311759032326311 ~2009
87967668975278060138311 ~2010
87977415591759548311911 ~2009
879806001721115344040912 ~2011
87991976511759839530311 ~2009
87995261991759905239911 ~2009
87996486591759929731911 ~2009
87998187678799818767111 ~2010
Home
4.724.182 digits
e-mail
25-04-13