Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
49909331772994559906311 ~2008
4991246411998249282310 ~2007
4991484383998296876710 ~2007
49921384613993710768911 ~2008
4992473663998494732710 ~2007
4992705251998541050310 ~2007
4992749579998549915910 ~2007
4993155659998631131910 ~2007
4993213691998642738310 ~2007
4993345499998669099910 ~2007
4993404239998680847910 ~2007
49934463896990824944711 ~2009
49934468474993446847111 ~2008
49939945634993994563111 ~2008
49941868612996512116711 ~2008
4994292503998858500710 ~2007
49943419932996605195911 ~2008
4994381531998876306310 ~2007
4994419739998883947910 ~2007
4994428031998885606310 ~2007
4994771531998954306310 ~2007
4995061583999012316710 ~2007
4995340463999068092710 ~2007
4995669491999133898310 ~2007
49956835994995683599111 ~2008
Exponent Prime Factor Digits Year
4995724319999144863910 ~2007
4995755783999151156710 ~2007
4996076003999215200710 ~2007
49960990518992978291911 ~2009
4996128239999225647910 ~2007
4996361459999272291910 ~2007
4996884671999376934310 ~2007
49970045572998202734311 ~2008
4997150531999430106310 ~2007
4997705711999541142310 ~2007
4997780783999556156710 ~2007
4997846879999569375910 ~2007
4997913131999582626310 ~2007
4997927591999585518310 ~2007
4998094859999618971910 ~2007
4998231923999646384710 ~2007
4998246359999649271910 ~2007
49983400012999004000711 ~2008
49986907012999214420711 ~2008
4998993971999798794310 ~2007
49990561037998489764911 ~2009
4999126571999825314310 ~2007
4999132343999826468710 ~2007
4999307363999861472710 ~2007
49995390314999539031111 ~2008
Exponent Prime Factor Digits Year
49996300013999704000911 ~2008
4999806611999961322310 ~2007
4999869683999973936710 ~2007
4999885211999977042310 ~2007
50001892191000037843911 ~2007
50002944013000176640711 ~2008
50004974991000099499911 ~2007
50006974791000139495911 ~2007
50010136275001013627111 ~2008
50013686391000273727911 ~2007
50015110431000302208711 ~2007
50015291991000305839911 ~2007
50017985631000359712711 ~2007
50018250111000365002311 ~2007
50020440831000408816711 ~2007
50021561835002156183111 ~2008
500220707312005296975312 ~2009
50024490711000489814311 ~2007
50026383231000527664711 ~2007
50027323133001639387911 ~2008
50028016191000560323911 ~2007
50029133391000582667911 ~2007
50030301111000606022311 ~2007
50032755231000655104711 ~2007
50034378231000687564711 ~2007
Exponent Prime Factor Dig. Year
50039710791000794215911 ~2007
50041664511000833290311 ~2007
50046859791000937195911 ~2007
50048654511000973090311 ~2007
50050344174004027533711 ~2008
50052690231001053804711 ~2007
50052721791001054435911 ~2007
50054516214004361296911 ~2008
50054580711001091614311 ~2007
50054863191001097263911 ~2007
50055136374004410909711 ~2008
50055883311001117666311 ~2007
50056536231001130724711 ~2007
50057125311001142506311 ~2007
50057805111001156102311 ~2007
500593429332037979475312 ~2010
50060316711001206334311 ~2007
50062021013003721260711 ~2008
50063696178010191387311 ~2009
50065413111001308262311 ~2007
50066617911001332358311 ~2007
50070259679012646740711 ~2009
50072707431001454148711 ~2007
50073379311001467586311 ~2007
50075227911001504558311 ~2007
Home
4.768.925 digits
e-mail
25-05-04