Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2037869363407573872710 ~2004
20378800992037880099111 ~2005
2037943403407588680710 ~2004
2038092011407618402310 ~2004
20381836393668730550311 ~2006
20381936834891664839311 ~2006
20382099611222925976711 ~2005
20382694616114808383111 ~2007
2038273883407654776710 ~2004
2038350911407670182310 ~2004
2038378763407675752710 ~2004
2038391471407678294310 ~2004
20384882531223092951911 ~2005
20385181931223110915911 ~2005
2038521239407704247910 ~2004
20385349971223120998311 ~2005
20385450731223127043911 ~2005
2038549379407709875910 ~2004
2038558139407711627910 ~2004
2038585859407717171910 ~2004
20386820531223209231911 ~2005
20386966011630957280911 ~2005
2038747631407749526310 ~2004
2038815851407763170310 ~2004
2038849019407769803910 ~2004
Exponent Prime Factor Digits Year
2038919171407783834310 ~2004
2039001203407800240710 ~2004
2039046791407809358310 ~2004
20390654171223439250311 ~2005
2039074811407814962310 ~2004
20390858232039085823111 ~2005
2039137559407827511910 ~2004
2039167859407833571910 ~2004
20392118596933320320711 ~2007
2039214179407842835910 ~2004
2039218931407843786310 ~2004
2039222099407844419910 ~2004
2039236739407847347910 ~2004
2039334959407866991910 ~2004
20393465571223607934311 ~2005
2039456651407891330310 ~2004
2039478179407895635910 ~2004
2039524211407904842310 ~2004
20395273512039527351111 ~2005
2039578283407915656710 ~2004
20397270131223836207911 ~2005
2039782631407956526310 ~2004
2039787923407957584710 ~2004
2039807123407961424710 ~2004
2039819531407963906310 ~2004
Exponent Prime Factor Digits Year
2039909999407981999910 ~2004
20399171692855884036711 ~2006
2039938259407987651910 ~2004
20399712171631976973711 ~2005
2039974679407994935910 ~2004
2039989223407997844710 ~2004
20401262811632101024911 ~2005
20401940833264310532911 ~2006
2040231503408046300710 ~2004
20402742531224164551911 ~2005
2040377123408075424710 ~2004
2040396419408079283910 ~2004
2040445871408089174310 ~2004
2040477503408095500710 ~2004
2040484091408096818310 ~2004
20405410331224324619911 ~2005
2040570359408114071910 ~2004
20407094232040709423111 ~2005
2040776711408155342310 ~2004
20408001296122400387111 ~2007
20408491571224509494311 ~2005
2040868871408173774310 ~2004
20409230211224553812711 ~2005
20409925331224595519911 ~2005
2041058423408211684710 ~2004
Exponent Prime Factor Digits Year
20411267411224676044711 ~2005
2041131863408226372710 ~2004
2041159259408231851910 ~2004
20414086931224845215911 ~2005
20414569931224874195911 ~2005
2041518119408303623910 ~2004
20415456891633236551311 ~2005
2041569443408313888710 ~2004
20416574811224994488711 ~2005
2041751891408350378310 ~2004
20418058497758862226311 ~2007
20418273736125482119111 ~2007
2041885031408377006310 ~2004
2041893611408378722310 ~2004
2041915511408383102310 ~2004
2041928711408385742310 ~2004
2041938719408387743910 ~2004
2041987163408397432710 ~2004
2042011739408402347910 ~2004
2042033963408406792710 ~2004
20421383411225283004711 ~2005
2042157179408431435910 ~2004
2042181371408436274310 ~2004
2042231699408446339910 ~2004
2042241083408448216710 ~2004
Home
5.247.179 digits
e-mail
25-12-14