Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
16811947071344955765711 ~2005
1681204463336240892710 ~2003
1681222331336244466310 ~2003
1681246499336249299910 ~2003
1681284959336256991910 ~2003
16812953332353813466311 ~2005
1681319039336263807910 ~2003
1681391759336278351910 ~2003
1681503671336300734310 ~2003
16815360912690457745711 ~2005
1681676891336335378310 ~2003
1681711151336342230310 ~2003
16817384834036172359311 ~2006
16817732574036255816911 ~2006
1681826483336365296710 ~2003
1681866971336373394310 ~2003
1681869023336373804710 ~2003
1681902083336380416710 ~2003
1681922603336384520710 ~2003
1681976171336395234310 ~2003
1682184923336436984710 ~2003
16822009915383043171311 ~2006
1682291879336458375910 ~2003
1682298419336459683910 ~2003
1682303699336460739910 ~2003
Exponent Prime Factor Digits Year
16823051811009383108711 ~2004
16823092011009385520711 ~2004
1682315711336463142310 ~2003
1682317211336463442310 ~2003
16823279873028190376711 ~2005
1682335163336467032710 ~2003
16823411534037618767311 ~2006
1682343359336468671910 ~2003
16823587871682358787111 ~2005
1682367611336473522310 ~2003
16823944371345915549711 ~2005
16823970711345917656911 ~2005
1682397371336479474310 ~2003
1682473343336494668710 ~2003
16825101611009506096711 ~2004
1682524691336504938310 ~2003
1682532623336506524710 ~2003
1682588399336517679910 ~2003
1682639603336527920710 ~2003
16826484531009589071911 ~2004
16826787731009607263911 ~2004
16826800371346144029711 ~2005
16828780272692604843311 ~2005
16828985091346318807311 ~2005
1682933831336586766310 ~2003
Exponent Prime Factor Digits Year
1682936483336587296710 ~2003
1682943719336588743910 ~2003
1682965919336593183910 ~2003
1683012179336602435910 ~2003
16830362635385716041711 ~2006
1683049883336609976710 ~2003
1683193331336638666310 ~2003
1683225179336645035910 ~2003
16832395015049718503111 ~2006
16833968331010038099911 ~2004
1683437663336687532710 ~2003
16835191932693630708911 ~2005
1683523871336704774310 ~2003
16835438535050631559111 ~2006
1683547403336709480710 ~2003
1683584219336716843910 ~2003
1683608471336721694310 ~2003
1683646571336729314310 ~2003
1683753059336750611910 ~2003
1683800999336760199910 ~2003
1683817199336763439910 ~2003
168385783111113461684712 ~2007
1683880223336776044710 ~2003
1683894851336778970310 ~2003
1683909203336781840710 ~2003
Exponent Prime Factor Digits Year
1683959159336791831910 ~2003
16840497711347239816911 ~2005
16841287272694605963311 ~2005
1684138979336827795910 ~2003
1684156319336831263910 ~2003
1684198091336839618310 ~2003
1684310591336862118310 ~2003
16843536471347482917711 ~2005
1684549571336909914310 ~2003
16846456611010787396711 ~2004
16847421171347793693711 ~2005
16847838731010870323911 ~2004
1684811951336962390310 ~2003
1684828643336965728710 ~2003
1684842779336968555910 ~2003
16849165911347933272911 ~2005
16849962175054988651111 ~2006
1685023523337004704710 ~2003
16850567211348045376911 ~2005
16850772535055231759111 ~2006
16850876111685087611111 ~2005
1685111699337022339910 ~2003
1685146943337029388710 ~2003
1685210651337042130310 ~2003
1685233163337046632710 ~2003
Home
5.247.179 digits
e-mail
25-12-14