Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
41244167393299533391311 ~2008
4124597759824919551910 ~2006
4124768051824953610310 ~2006
4125011183825002236710 ~2006
4125029963825005992710 ~2006
41252340532475140431911 ~2007
41252744212475164652711 ~2007
4125281651825056330310 ~2006
4125318839825063767910 ~2006
4125414911825082982310 ~2006
41256533095775914632711 ~2008
41257463332475447799911 ~2007
4125836999825167399910 ~2006
41259209993300736799311 ~2008
41259443939902266543311 ~2009
4126099031825219806310 ~2006
41261683812475701028711 ~2007
41265588674126558867111 ~2008
41265649973301251997711 ~2008
4126846019825369203910 ~2006
41269456313301556504911 ~2008
41269824717428568447911 ~2008
4127039303825407860710 ~2006
4127172719825434543910 ~2006
41271750012476305000711 ~2007
Exponent Prime Factor Digits Year
4127198963825439792710 ~2006
412720022915683360870312 ~2009
4127216543825443308710 ~2006
4127370671825474134310 ~2006
41274027012476441620711 ~2007
41274157012476449420711 ~2007
4127511131825502226310 ~2006
41275128914127512891111 ~2008
41275263172476515790311 ~2007
41276059036604169444911 ~2008
4127613491825522698310 ~2006
41276888899080915555911 ~2009
4127908751825581750310 ~2006
4128080783825616156710 ~2006
4128168851825633770310 ~2006
41282395673302591653711 ~2008
4128337991825667598310 ~2006
41283642372477018542311 ~2007
4128407411825681482310 ~2006
4128419843825683968710 ~2006
41285727532477143651911 ~2007
4128603551825720710310 ~2006
41286758332477205499911 ~2007
412868248317340466428712 ~2009
4128875339825775067910 ~2006
Exponent Prime Factor Digits Year
41290245732477414743911 ~2007
41290267219083858786311 ~2009
4129406399825881279910 ~2006
4129426799825885359910 ~2006
4129450151825890030310 ~2006
4129765751825953150310 ~2006
4130069483826013896710 ~2006
41301396797434251422311 ~2008
4130183471826036694310 ~2006
4130360183826072036710 ~2006
4130528483826105696710 ~2006
41311201572478672094311 ~2007
4131370703826274140710 ~2006
4131787799826357559910 ~2006
4131835811826367162310 ~2006
41319540532479172431911 ~2007
4132042319826408463910 ~2006
4132317863826463572710 ~2006
4132345103826469020710 ~2006
4132506239826501247910 ~2006
4132703831826540766310 ~2006
4132936091826587218310 ~2006
41330151412479809084711 ~2007
4133125883826625176710 ~2006
41332790234133279023111 ~2008
Exponent Prime Factor Digits Year
4133347103826669420710 ~2006
413340897726453817452912 ~2010
4133669219826733843910 ~2006
4133671259826734251910 ~2006
4133703191826740638310 ~2006
4134122903826824580710 ~2006
41341297732480477863911 ~2007
4134206963826841392710 ~2006
41343400332480604019911 ~2007
41344690073307575205711 ~2008
4134758051826951610310 ~2006
41347646932480858815911 ~2007
41348430773307874461711 ~2008
41351696834135169683111 ~2008
4135222523827044504710 ~2006
4135324631827064926310 ~2006
4135372019827074403910 ~2006
4135384919827076983910 ~2006
41355310975789743535911 ~2008
41355705775789798807911 ~2008
4135589063827117812710 ~2006
413573825929777315464912 ~2010
41357453513308596280911 ~2008
4135809719827161943910 ~2006
4136066591827213318310 ~2006
Home
4.724.182 digits
e-mail
25-04-13