Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
40993143412459588604711 ~2007
4099317479819863495910 ~2006
40993477812459608668711 ~2007
40994188313279535064911 ~2008
4099643963819928792710 ~2006
4099701059819940211910 ~2006
40998985332459939119911 ~2007
409989861719679513361712 ~2009
4100153591820030718310 ~2006
4100284343820056868710 ~2006
41003472612460208356711 ~2007
4100401223820080244710 ~2006
4100491679820098335910 ~2006
41008386317381509535911 ~2008
4100907071820181414310 ~2006
41010628572460637714311 ~2007
41011039973280883197711 ~2008
4101156359820231271910 ~2006
41012916732460775003911 ~2007
4101353771820270754310 ~2006
4101363011820272602310 ~2006
41013974772460838486311 ~2007
41015259074101525907111 ~2008
4101907151820381430310 ~2006
4102131023820426204710 ~2006
Exponent Prime Factor Digits Year
4102146143820429228710 ~2006
4102328519820465703910 ~2006
41023553932461413235911 ~2007
4102400231820480046310 ~2006
41024188634102418863111 ~2008
4102505639820501127910 ~2006
4102622651820524530310 ~2006
41026493332461589599911 ~2007
41027188212461631292711 ~2007
41029535416564725665711 ~2008
4103219891820643978310 ~2006
41032971893282637751311 ~2008
4103401931820680386310 ~2006
4103477639820695527910 ~2006
4103484491820696898310 ~2006
4103588399820717679910 ~2006
4103601251820720250310 ~2006
4103690663820738132710 ~2006
4103744531820748906310 ~2006
4103755343820751068710 ~2006
41037557419028262630311 ~2009
4103861819820772363910 ~2006
41042936573283434925711 ~2008
41046367994104636799111 ~2008
4104764243820952848710 ~2006
Exponent Prime Factor Digits Year
410477930913135293788912 ~2009
41048723279851693584911 ~2009
4105068923821013784710 ~2006
4105167323821033464710 ~2006
41052535212463152112711 ~2007
4105339523821067904710 ~2006
4105375979821075195910 ~2006
4105922759821184551910 ~2006
4106101319821220263910 ~2006
4106349623821269924710 ~2006
4106753363821350672710 ~2006
41069906212464194372711 ~2007
4107159011821431802310 ~2006
41072425077393036512711 ~2008
4107277403821455480710 ~2006
41074058597393330546311 ~2008
4107454943821490988710 ~2006
41077543732464652623911 ~2007
4107761699821552339910 ~2006
4108168451821633690310 ~2006
4108179011821635802310 ~2006
41085846172465150770311 ~2007
4108708403821741680710 ~2006
41087491673286999333711 ~2008
41087817532465269051911 ~2007
Exponent Prime Factor Digits Year
41088727313287098184911 ~2008
4108882859821776571910 ~2006
4108905071821781014310 ~2006
4108987871821797574310 ~2006
41090056034109005603111 ~2008
41090306172465418370311 ~2007
4109192579821838515910 ~2006
41093485913287478872911 ~2008
41093753572465625214311 ~2007
4109409743821881948710 ~2006
41094513713287561096911 ~2008
4109603903821920780710 ~2006
4109651411821930282310 ~2006
41097637274109763727111 ~2008
4109783663821956732710 ~2006
4109891939821978387910 ~2006
41099087234109908723111 ~2008
4109964623821992924710 ~2006
4109994263821998852710 ~2006
41101746136576279380911 ~2008
4110369611822073922310 ~2006
41105779274110577927111 ~2008
4110681203822136240710 ~2006
411071389117264998342312 ~2009
4110729431822145886310 ~2006
Home
4.724.182 digits
e-mail
25-04-13