Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4088058431817611686310 ~2006
408818533722893837887312 ~2010
408820916310629343823912 ~2009
4088565119817713023910 ~2006
40885948336541751732911 ~2008
4088768459817753691910 ~2006
4088947319817789463910 ~2006
4089056819817811363910 ~2006
40891259873271300789711 ~2008
4089212339817842467910 ~2006
40894757212453685432711 ~2007
40895995132453759707911 ~2007
4089690851817938170310 ~2006
4089833963817966792710 ~2006
4089882299817976459910 ~2006
4089956303817991260710 ~2006
4090156979818031395910 ~2006
4090362779818072555910 ~2006
4090366979818073395910 ~2006
409041331715543570604712 ~2009
4090607771818121554310 ~2006
40908955612454537336711 ~2007
40909875314090987531111 ~2008
4091066951818213390310 ~2006
4091090303818218060710 ~2006
Exponent Prime Factor Digits Year
4091362631818272526310 ~2006
4091453651818290730310 ~2006
40915304812454918288711 ~2007
40916564476546650315311 ~2008
4091759999818351999910 ~2006
4091884799818376959910 ~2006
40920208932455212535911 ~2007
4092490679818498135910 ~2006
40925178612455510716711 ~2007
4092655439818531087910 ~2006
4092822731818564546310 ~2006
4092857819818571563910 ~2006
40928865175730041123911 ~2008
4092934211818586842310 ~2006
4093041539818608307910 ~2006
4093285439818657087910 ~2006
4093471643818694328710 ~2006
4093546283818709256710 ~2006
40935670613274853648911 ~2008
40936560113274924808911 ~2008
4093718543818743708710 ~2006
40938539234093853923111 ~2008
4093894643818778928710 ~2006
4093907591818781518310 ~2006
40939116732456347003911 ~2007
Exponent Prime Factor Digits Year
40939327517369078951911 ~2008
4093939919818787983910 ~2006
4093956803818791360710 ~2006
40940654532456439271911 ~2007
4094067011818813402310 ~2006
40940849234094084923111 ~2008
4094325803818865160710 ~2006
4094398571818879714310 ~2006
40944085612456645136711 ~2007
4094586563818917312710 ~2006
40946009332456760559911 ~2007
4094775791818955158310 ~2006
4094794943818958988710 ~2006
4094871971818974394310 ~2006
4095120779819024155910 ~2006
4095421391819084278310 ~2006
40954955572457297334311 ~2007
40955084573276406765711 ~2008
40956562972457393778311 ~2007
4095755351819151070310 ~2006
4095821111819164222310 ~2006
40960337932457620275911 ~2007
4096137659819227531910 ~2006
4096149611819229922310 ~2006
40961687332457701239911 ~2007
Exponent Prime Factor Digits Year
40962024914096202491111 ~2008
40964215572457852934311 ~2007
4096581119819316223910 ~2006
40971092532458265551911 ~2007
4097244479819448895910 ~2006
4097251919819450383910 ~2006
409741061341793588252712 ~2010
40975620412458537224711 ~2007
4097573591819514718310 ~2006
4097614343819522868710 ~2006
4097767559819553511910 ~2006
40977755332458665319911 ~2007
4097882543819576508710 ~2006
40979545193278363615311 ~2008
4098064739819612947910 ~2006
4098120503819624100710 ~2006
40982311876557169899311 ~2008
4098468191819693638310 ~2006
4098495839819699167910 ~2006
4098523619819704723910 ~2006
4098551843819710368710 ~2006
40987887732459273263911 ~2007
4098807131819761426310 ~2006
4099003043819800608710 ~2006
4099057031819811406310 ~2006
Home
4.724.182 digits
e-mail
25-04-13