Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4021905599804381119910 ~2006
4022066183804413236710 ~2006
4022149031804429806310 ~2006
4022159651804431930310 ~2006
40222378313217790264911 ~2007
402229036912066871107112 ~2009
4022470559804494111910 ~2006
40224984434022498443111 ~2008
4022606111804521222310 ~2006
4022624603804524920710 ~2006
4022839811804567962310 ~2006
4022957819804591563910 ~2006
40229582812413774968711 ~2007
4023035531804607106310 ~2006
40231945732413916743911 ~2007
4023200003804640000710 ~2006
4023336419804667283910 ~2006
4023422891804684578310 ~2006
402361959123336993627912 ~2010
4023823871804764774310 ~2006
40238937436438229988911 ~2008
4023978683804795736710 ~2006
40240051994024005199111 ~2008
4024041803804808360710 ~2006
4024071983804814396710 ~2006
Exponent Prime Factor Digits Year
4024082423804816484710 ~2006
4024190279804838055910 ~2006
4024313603804862720710 ~2006
40244403173219552253711 ~2007
4024681499804936299910 ~2006
4024790219804958043910 ~2006
4024811243804962248710 ~2006
40250617212415037032711 ~2007
4025353679805070735910 ~2006
40256176913220494152911 ~2007
4025784023805156804710 ~2006
4026123203805224640710 ~2006
4026200939805240187910 ~2006
40263955332415837319911 ~2007
40265338073221227045711 ~2007
4026665603805333120710 ~2006
4026735299805347059910 ~2006
40267400899664176213711 ~2009
40268740012416124400711 ~2007
402689180919329080683312 ~2009
4026961943805392388710 ~2006
4027060463805412092710 ~2006
4027066871805413374310 ~2006
40272194597248995026311 ~2008
4027225211805445042310 ~2006
Exponent Prime Factor Digits Year
40273284018860122482311 ~2009
4027449119805489823910 ~2006
4027485551805497110310 ~2006
4027594223805518844710 ~2006
4027957331805591466310 ~2006
40279584893222366791311 ~2007
4028096063805619212710 ~2006
4028176079805635215910 ~2006
40283546213222683696911 ~2007
4028709851805741970310 ~2006
4028893859805778771910 ~2006
4029049463805809892710 ~2006
4029063719805812743910 ~2006
4029278303805855660710 ~2006
4029284111805856822310 ~2006
40293149812417588988711 ~2007
40294936732417696203911 ~2007
4029685631805937126310 ~2006
4029689903805937980710 ~2006
4029765251805953050310 ~2006
40298159212417889552711 ~2007
4029914771805982954310 ~2006
40300593593224047487311 ~2007
4030238939806047787910 ~2006
4030249403806049880710 ~2006
Exponent Prime Factor Digits Year
40302819113224225528911 ~2007
4030494959806098991910 ~2006
4030844591806168918310 ~2006
4030937483806187496710 ~2006
40310688012418641280711 ~2007
4031228231806245646310 ~2006
4031451563806290312710 ~2006
40314604812418876288711 ~2007
4031557163806311432710 ~2006
4031584619806316923910 ~2006
4031846783806369356710 ~2006
4032035699806407139910 ~2006
40320717895644900504711 ~2008
4032142139806428427910 ~2006
40322038936451526228911 ~2008
4032460931806492186310 ~2006
40324942936451990868911 ~2008
40325468273226037461711 ~2007
4032748871806549774310 ~2006
403276632719357278369712 ~2009
4032802331806560466310 ~2006
4033075811806615162310 ~2006
40331744898872983875911 ~2009
40332233332419933999911 ~2007
4033529651806705930310 ~2006
Home
4.724.182 digits
e-mail
25-04-13