Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1188294083237658816710 ~2002
1188306923237661384710 ~2002
1188346693713008015910 ~2003
1188401663237680332710 ~2002
1188432743237686548710 ~2002
1188508679237701735910 ~2002
1188511931237702386310 ~2002
1188578399237715679910 ~2002
1188588059237717611910 ~2002
1188597719237719543910 ~2002
1188615971237723194310 ~2002
1188643103237728620710 ~2002
1188706361713223816710 ~2003
1188742559237748511910 ~2002
1188742979237748595910 ~2002
11887658393804050684911 ~2005
1188907763237781552710 ~2002
1188941861951153488910 ~2003
1188942731237788546310 ~2002
1188949571237789914310 ~2002
11889801732853552415311 ~2005
1189003499237800699910 ~2002
1189068143237813628710 ~2002
1189095191237819038310 ~2002
1189103483237820696710 ~2002
Exponent Prime Factor Digits Year
1189130759237826151910 ~2002
1189146599237829319910 ~2002
11891567571664819459911 ~2004
1189192553713515531910 ~2003
1189219763237843952710 ~2002
1189222823237844564710 ~2002
1189249703237849940710 ~2002
1189304111237860822310 ~2002
1189305443237861088710 ~2002
1189337783237867556710 ~2002
1189351283237870256710 ~2002
1189371479237874295910 ~2002
1189387343237877468710 ~2002
1189416071237883214310 ~2002
1189428479237885695910 ~2002
1189456679237891335910 ~2002
1189472699237894539910 ~2002
11895221572854853176911 ~2005
1189556639237911327910 ~2002
1189580603237916120710 ~2002
1189587419237917483910 ~2002
1189597319237919463910 ~2002
1189624391237924878310 ~2002
1189641599237928319910 ~2002
1189770119237954023910 ~2002
Exponent Prime Factor Digits Year
1189857563237971512710 ~2002
11898749231189874923111 ~2004
1189883861713930316710 ~2003
11899612871189961287111 ~2004
1189981357713988814310 ~2003
1190003741952002992910 ~2003
1190042531238008506310 ~2002
11902025771904324123311 ~2004
1190216399238043279910 ~2002
11902209233094574399911 ~2005
1190224559238044911910 ~2002
1190248991238049798310 ~2002
1190270531238054106310 ~2002
1190307719238061543910 ~2002
1190328059238065611910 ~2002
1190330087952264069710 ~2003
1190370941952296752910 ~2003
1190379959238075991910 ~2002
1190417183238083436710 ~2002
11904230992857015437711 ~2005
1190452751238090550310 ~2002
11904617332857108159311 ~2005
1190461931238092386310 ~2002
1190475119238095023910 ~2002
1190487359238097471910 ~2002
Exponent Prime Factor Digits Year
1190519483238103896710 ~2002
1190520899238104179910 ~2002
1190548883238109776710 ~2002
1190567297714340378310 ~2003
11905693432857366423311 ~2005
1190690159238138031910 ~2002
1190694551238138910310 ~2002
1190712023238142404710 ~2002
1190717399952573919310 ~2003
1190740451952592360910 ~2003
1190742743238148548710 ~2002
11907813672143406460711 ~2004
1190827091238165418310 ~2002
1190878343238175668710 ~2002
11909192533572757759111 ~2005
1190939231238187846310 ~2002
1190947871238189574310 ~2002
11910040271191004027111 ~2004
1191047833714628699910 ~2003
1191070697714642418310 ~2003
1191105491238221098310 ~2002
1191137513714682507910 ~2003
11912058891667688244711 ~2004
1191224159238244831910 ~2002
1191252383238250476710 ~2002
Home
5.307.017 digits
e-mail
26-01-11