Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
29371076896461636915911 ~2007
29372992972349839437711 ~2006
2937320051587464010310 ~2005
2937485279587497055910 ~2005
2937490403587498080710 ~2005
2937538343587507668710 ~2005
2937556691587511338310 ~2005
29376294171762577650311 ~2006
2937652979587530595910 ~2005
2937734939587546987910 ~2005
2937779723587555944710 ~2005
2937790571587558114310 ~2005
2937849503587569900710 ~2005
29379652214700744353711 ~2007
2937985163587597032710 ~2005
2938537403587707480710 ~2005
2938613339587722667910 ~2005
29387355592350988447311 ~2006
2938858619587771723910 ~2005
29388767572351101405711 ~2006
2939020499587804099910 ~2005
29390885771763453146311 ~2006
29392178877054122928911 ~2008
29392228334702756532911 ~2007
29393116011763586960711 ~2006
Exponent Prime Factor Digits Year
29394550372351564029711 ~2006
2939658971587931794310 ~2005
29397111915291480143911 ~2007
29398287792939828779111 ~2007
2939878751587975750310 ~2005
29398921072351913685711 ~2006
29399372832939937283111 ~2007
29401252571764075154311 ~2006
294019744321169421589712 ~2009
2940268679588053735910 ~2005
29403915611764234936711 ~2006
2940498371588099674310 ~2005
2940559103588111820710 ~2005
2940594659588118931910 ~2005
29407799832940779983111 ~2007
2940929819588185963910 ~2005
2941173563588234712710 ~2005
29412198712352975896911 ~2006
2941368299588273659910 ~2005
2941442351588288470310 ~2005
29414834211764890052711 ~2006
2941483631588296726310 ~2005
294151159315884162602312 ~2008
294154598328238841436912 ~2009
2941669403588333880710 ~2005
Exponent Prime Factor Digits Year
2942069519588413903910 ~2005
2942151323588430264710 ~2005
29421744292353739543311 ~2006
2942191979588438395910 ~2005
294226533161787571951112 ~2010
29423287731765397263911 ~2006
2942419691588483938310 ~2005
2942536871588507374310 ~2005
29426358792942635879111 ~2007
2942709743588541948710 ~2005
2942766719588553343910 ~2005
2942778851588555770310 ~2005
29428648872942864887111 ~2007
29429544075297317932711 ~2007
29430098992354407919311 ~2006
2943026843588605368710 ~2005
2943089459588617891910 ~2005
29430959931765857595911 ~2006
29431033492354482679311 ~2006
29432066211765923972711 ~2006
29433113771765986826311 ~2006
2943458543588691708710 ~2005
29434973272354797861711 ~2006
2943669719588733943910 ~2005
29437532037653758327911 ~2008
Exponent Prime Factor Digits Year
2943880763588776152710 ~2005
29439286571766357194311 ~2006
29440255372355220429711 ~2006
2944037039588807407910 ~2005
2944097759588819551910 ~2005
29442523872944252387111 ~2007
2944356839588871367910 ~2005
2944669391588933878310 ~2005
2944782371588956474310 ~2005
2944912259588982451910 ~2005
29449135931766948155911 ~2006
29449185912944918591111 ~2007
2944923419588984683910 ~2005
29451204611767072276711 ~2006
2945212811589042562310 ~2005
294527212955960170451112 ~2010
2945373971589074794310 ~2005
29454357072945435707111 ~2007
29454469571767268174311 ~2006
2945467559589093511910 ~2005
2945469671589093934310 ~2005
2945508971589101794310 ~2005
29455281412356422512911 ~2006
29457211612356576928911 ~2006
29459574112356765928911 ~2006
Home
4.724.182 digits
e-mail
25-04-13