Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3251707919650341583910 ~2005
32517345112601387608911 ~2007
3251826191650365238310 ~2005
3252039431650407886310 ~2005
3252126959650425391910 ~2005
3252189599650437919910 ~2005
3252326711650465342310 ~2005
32525043892602003511311 ~2007
32525078934553511050311 ~2007
3252579779650515955910 ~2005
3252606011650521202310 ~2005
32526324971951579498311 ~2006
3252651659650530331910 ~2005
3252696119650539223910 ~2005
3252711419650542283910 ~2005
3252803663650560732710 ~2005
3252858131650571626310 ~2005
32528795715855183227911 ~2008
3252961931650592386310 ~2005
32529685974554156035911 ~2007
32530396192602431695311 ~2007
32530546993253054699111 ~2007
3253204919650640983910 ~2005
3253303811650660762310 ~2005
325334125126026730008112 ~2009
Exponent Prime Factor Digits Year
3253547879650709575910 ~2005
3253705943650741188710 ~2005
32537949971952276998311 ~2006
3253796159650759231910 ~2005
32538137992603051039311 ~2007
32538372011952302320711 ~2006
32538593171952315590311 ~2006
3253901279650780255910 ~2005
32539932971952395978311 ~2006
3254010359650802071910 ~2005
32541563931952493835911 ~2006
32541904811952514288711 ~2006
3254209223650841844710 ~2005
3254304023650860804710 ~2005
3254320739650864147910 ~2005
3254350283650870056710 ~2005
3254445671650889134310 ~2005
3254466599650893319910 ~2005
3254492771650898554310 ~2005
32545915515858264791911 ~2008
3254634371650926874310 ~2005
3254848631650969726310 ~2005
3254938523650987704710 ~2005
3255173123651034624710 ~2005
3255404759651080951910 ~2005
Exponent Prime Factor Digits Year
32554459815208713569711 ~2008
3255501251651100250310 ~2005
32555809977813394392911 ~2008
3255669971651133994310 ~2005
3255692939651138587910 ~2005
3255764903651152980710 ~2005
3255945923651189184710 ~2005
3255948203651189640710 ~2005
3256055459651211091910 ~2005
32560583211953634992711 ~2006
32560991593256099159111 ~2007
32561288934558580450311 ~2007
3256136963651227392710 ~2005
32561611211953696672711 ~2006
3256283363651256672710 ~2005
3256456319651291263910 ~2005
325649697713025987908112 ~2008
3256524311651304862310 ~2005
3256574339651314867910 ~2005
3256686791651337358310 ~2005
32570024331954201459911 ~2006
32570347731954220863911 ~2006
3257035583651407116710 ~2005
3257178731651435746310 ~2005
325738460912378061514312 ~2008
Exponent Prime Factor Digits Year
3257435903651487180710 ~2005
32576719312606137544911 ~2007
3257793911651558782310 ~2005
32579121294561076980711 ~2007
3257942399651588479910 ~2005
3258080519651616103910 ~2005
3258132623651626524710 ~2005
3258135071651627014310 ~2005
3258146711651629342310 ~2005
3258224603651644920710 ~2005
3258225779651645155910 ~2005
32582542131954952527911 ~2006
32582986611954979196711 ~2006
3258421343651684268710 ~2005
325857508747575196270312 ~2010
32586901811955214108711 ~2006
3258791843651758368710 ~2005
32591030171955461810311 ~2006
3259108103651821620710 ~2005
3259234091651846818310 ~2005
32594832592607586607311 ~2007
3259648439651929687910 ~2005
32596615211955796912711 ~2006
3259952243651990448710 ~2005
3259972211651994442310 ~2005
Home
4.724.182 digits
e-mail
25-04-13